监督学习算法——逻辑回归算法

这篇博客深入探讨了逻辑回归的工作原理,包括Sigmoid函数、损失函数、决策边界和正则项。介绍了如何使用sklearn库实现逻辑回归,并讨论了解决多分类问题的策略,如OvR和OvO。同时,还展示了手写实现简单逻辑回归算法的过程。

工作原理

Sigmoid 函数

在这里插入图片描述

公式:
σ ( t ) = 1 1 + e − t \sigma(t)=\frac{1}{1+e^{-t}} σ(t)=1+et1
p ^ = σ ( θ T ⋅ x b ) = 1 1 + e − θ T ⋅ x b \hat{p}=\sigma\left(\theta^{T} \cdot x_{b}\right)=\frac{1}{1+e^{-\theta^{T} \cdot x_{b}}} p^=σ(θTxb)=1+eθTxb1

y ^ = { 1 , p ^ ≥ 0.5 θ T ⋅ x b ≥ 0 0 , p ^ < 0.5 θ T ⋅ x b < 0 \hat{y}=\left\{\begin{array}{lll} 1, & \hat{p} \geq 0.5 & \theta^{T} \cdot x_{b} \geq 0 \\ 0, & \hat{p}<0.5 & \theta^{T} \cdot x_{b}<0 \end{array}\right. y^={ 1,0,p^0.5p^<0.5θ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值