机器学习
吴恩达机器学习,数理统计,机器学习实战
Taiiiii
这个作者很懒,什么都没留下…
展开
-
tensorflow
文章目录图的结构图的结构tensor 张量(指代的数据)operation:操作节点(指代的函数)graph 程序的结构session 会话(运算程序的图)作用:运行图的结构分配资源计算方掌握资源(队列,线程,变量)tf.session()名字,形状,数字类型变量(Variable):...原创 2020-12-25 19:38:24 · 136 阅读 · 0 评论 -
集成学习
文章目录hard softingsoft voting集成学习子模型Bagging和PastingOOBhard softing集成学习的思想就是综合考虑多个算法的结果,通过投票机制,少数服从多数,将得票最多的结果设为最终的结果。from sklearn.ensemble import VotingClassifiervoting_clf = VotingClassifier(estim...原创 2020-05-07 09:23:54 · 232 阅读 · 0 评论 -
监督学习算法——决策树
文章目录决策树的构造特征选择问题纯度信息熵信息增益决策树生成过程中的问题信息增益(ID3算法)信息增益比(C4.5算法)基尼指数(CART算法)决策树的剪枝问题sklearn 调用决策树决策树的构造包括三个过程:特征选择、决策树生成和决策树剪枝特征选择问题特征选择问题:构建决策树的过程中, 这个根节点怎么选择,也就是这个特征要怎么选择。解决方法:纯度纯度换一种方式来解释就是让目标变量...原创 2020-05-03 22:37:23 · 476 阅读 · 0 评论 -
监督学习算法——支持向量机(SVM)算法
文章目录工作原理硬间隔公式推导软间隔目标推导非线性支持向量机核函数高斯核函数SVM解决回归问题sklearn 调用SVM工作原理SVM 就是帮我们找到一个超平面,这个超平面能将不同的样本划分开,同时使得样本集中的点到这个分类超平面的最小距离(即分类间隔)最大化。硬间隔假如数据是完全的线性可分的,那么学习到的模型可以称为硬间隔支持向量机。公式推导如何求 点到这个分类超平面的最小距离(...原创 2020-05-03 15:01:26 · 1745 阅读 · 0 评论 -
机器学习——评价标准
文章目录混淆矩阵precision recallF1 ScorePrecision-Recall 的 平衡AUC . ROCAUC (Area Under Curve)ROC(receiver operating characteristic curve )TPR FPRROC曲线的绘制sklearn 调用手打python实现问题:在存在极度偏斜的数据中,应用分类准确度来评价分类算法的好坏是远...原创 2020-05-02 17:16:12 · 471 阅读 · 0 评论 -
监督学习算法——逻辑回归算法
文章目录工作原理Sigmoid 函数损失函数:决策边界:逻辑回归中的正则项解决多分类问题sklearn调用逻辑回归算法手写python简单逻辑回归算法工作原理Sigmoid 函数公式:σ(t)=11+e−t\sigma(t)=\frac{1}{1+e^{-t}}σ(t)=1+e−t1p^=σ(θT⋅xb)=11+e−θT⋅xb\hat{p}=\sigma\left(\theta^{T...原创 2020-05-02 10:45:12 · 601 阅读 · 0 评论 -
监督学习算法——线性回归(多项式回归)
文章目录工作原理sklearn 实现多项式回归工作原理当线性函数无法 拟合数据时,我们选择多项式回归。方法:为原来的数据,增加新的特征(升维)。简而言之,就是在线性回归方法之前,进行了数据预处理(升维)数据升维:低位数据集的线性模型常常出现欠拟合的问题,升维后,增加特征,有利于解决欠拟合的问题# 数据升维sklearn 实现多项式回归# 自建数据import numpy as ...原创 2020-05-01 15:13:42 · 733 阅读 · 0 评论 -
非监督学习算法——PCA算法
文章目录PCA算法作用优缺点工作原理数学公式sklearn 调用PCA算法手打python实现简单PCA算法PCA算法作用pca算法主要用于数据的降维,可以发现更便于人来理解的特征。还可以可视化,去噪。数据降维的作用:数据压缩做数据可视化或特征提取(比如降到2维,看坐标图可视化)异常值检测和聚类优缺点精度上可能稍微会有所丢失,但是速度上会提高工作原理工作原理:PCA找主成...原创 2020-05-01 11:41:10 · 724 阅读 · 0 评论 -
监督学习算法——线性回归算法
文章目录线性回归工作原理简单线性回归最小二乘法:公式向量化多元线性回归正规方程解:梯度下降解优缺点线性回归算法的 评测sklearn 中线性回归算法调用手打python实现简单线性回归线性回归工作原理简而言之,就是通过已知数据的拟合出一条线性线,来预测希望 yyy 与 y^(i)\hat{y}^{(i)}y^(i) 的距离差距尽量小:选用公式 (y(i)−y^(i))2\left(y...原创 2020-04-27 12:27:28 · 1431 阅读 · 0 评论 -
监督学习算法——K近邻算法(KNN)
文章目录KNN工作原理算法关键点距离问题k取值问题(超参数取值问题)距离权重问题(超参数取值问题)优缺点数据归一化KNN分类KNN回归sklearn中KNN的调用手打python实现简单KNNKNN工作原理直观的解释:给定一个训练数据集,对于新的输入实例,在训练集中找到与该实例最近邻的 k 个实例,这 k 个实例的多数属于哪个类,则该实例就属于哪个类。KNN的工作原理大致分为三步:计算...原创 2020-04-26 23:48:37 · 1013 阅读 · 0 评论 -
吴恩达机器学习(线性回归,单变量,多变量,正规方程)
文章目录机器学习 1 - 线性回归单变量线性回归batch gradient decent(批量梯度下降)多变量线性回归normal equation(正规方程)(选做)机器学习 1 - 线性回归范数 基础单变量线性回归导入需要使用的包import numpy as npimport pandas as pdimport matplotlib.pyplot as plt导入数...原创 2020-03-28 22:27:42 · 260 阅读 · 0 评论