关于 树的遍历 一题的思路+代码(树的后序与中序遍历输出层序遍历)(递归)

本文介绍了一种根据二叉树的后序遍历和中序遍历来构造树的方法,并利用广度优先搜索(BFS)输出层序遍历。首先,找到后序遍历中在中序遍历中最靠后的节点作为根节点,然后递归地构造左右子树。最后,通过BFS遍历输出层序结果。代码中用到了队列来实现BFS,但注意代码的时间复杂度较高,为O(n^3),有待优化。

题目来源:Acwing 1497.树的遍历||PTA L2-006 树的遍历 (25 分)
21.04.19补充:回头看这个方法太麻烦了,简单些的可以参考 PTA天梯练习赛 刷题笔记1 的 L2-011 玩转二叉树

题目描述

一个二叉树,树中每个节点的权值互不相同。
现在给出它的后序遍历和中序遍历,请你输出它的层序遍历。

输入描述

第一行包含整数 N,表示二叉树的节点数。
第二行包含 N 个整数,表示二叉树的后序遍历。
第三行包含 N 个整数,表示二叉树的中序遍历。

输出描述

输出一行 N 个整数,表示二叉树的层序遍历。

数据范围

1≤N≤30

输入样例1

7
2 3 1 5 7 6 4
1 2 3 4 5 6 7

输出样例1

4 1 6 3 5 7 2

思路

对于任何一个二叉树的合法中序遍历与后序遍历,中序遍历中 在后序遍历中位置最靠后的 数,即为该树的根;

依照此根,我们又可以将该中序遍历分为左右两部分,即为该根的左右两棵子树,进行递归处理。

建树完成之后,通过BFS获取层序遍历。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

vector<int> son[31];//son[x]代表x的子节点

int n,i,j;
int mid[31],lst[31],rot=0;//rot存总根

void maketr(int l,int r,int fa)//fa存该树的根的父节点
{
    if(l==r)//叶子
    {
        son[fa].push_back(mid[l]);
        return;
    }
    else if(l>r)return;//非法
    int root=0,rm=0;//root存该子树的根,rm存该根在中序遍历中的位置
    for(i=l;i<=r;i++)//对于该子树的每一个节点
    {
        for(j=1;j<=n;j++)//在后序遍历中位置最靠后的一个
        {
            if(mid[i]==lst[j])
            {
                if(j>root){root=j,rm=i;}
                //printf("*");
                break;
            }
        }
    }
    if(!rot)rot=lst[root];//如果总根未确定,该根即为总根
    //printf("%d\n",root);
    son[fa].push_back(lst[root]);//将此树的根连接至其父节点
    maketr(l,rm-1,lst[root]);//递归左子树
    maketr(rm+1,r,lst[root]);//递归右子树
    return;
}
queue<int> que;//bfs队列
void bfs(int x)
{
    //printf("*");
	int pf=0;
    for(i=0;i<son[x].size();i++)que.push(son[x][i]);
    while(!que.empty())
    {
        int now=que.front();
        que.pop();
		if(!pf)pf=1;
		else printf(" ");
        printf("%d",now);
        for(i=0;i<son[now].size();i++)que.push(son[now][i]);//树无自环、重边与回路,不需要考虑重复加入的问题
    }
}
int main()
{
    cin>>n;
    for(i=1;i<=n;i++)scanf("%d",&lst[i]);
    for(i=1;i<=n;i++)scanf("%d",&mid[i]);
    maketr(1,n,0);//建树
    bfs(0);//bfs输出
    return 0;
}

注1:代码未解决行末空格的问题(已解决);
注2:时间复杂度O(n3),待优化。

ED

\

### 实现层序遍历 为了实现根据给定的二叉树后序遍历序遍历输出层序遍历,可以分为两个主要部分来完成此任务。首先是重建二叉树,其次是执行层序遍历。 #### 一、定义二叉树节点结构体 ```c typedef struct TreeNode { int val; struct TreeNode* left; struct TreeNode* right; } TreeNode, *BiTree; ``` #### 二、通过后序遍历序遍历构建二叉树 构建函数接收三个参数:指向当前子起始位置的指针`inStart`,指向当前子终止位置的指针`inEnd`以及指向后序数组索引的变量`postIndex`。该过程会递归地寻找根节点并划分左右子直至无法进一步分割[^2]。 ```c // 构造辅助哈希表用于快速查找中序中的元素下标 void buildMap(int* inorder, int size, int* map) { for (int i = 0; i < size; ++i) map[inorder[i]] = i; } TreeNode* constructFromPostIn(int post[], int in[], int len) { static int postIndex = len - 1; if (len <= 0) return NULL; // 创建新节点作为根节点 TreeNode* root = (TreeNode*)malloc(sizeof(TreeNode)); root->val = post[postIndex--]; // 查找根节点在中序的位置 int indexRoot = findPosition(in, len, root->val); // 递归建立右子左子 root->right = constructFromPostIn(post, in + indexRoot + 1, len - indexRoot - 1); root->left = constructFromPostIn(post, in, indexRoot); return root; } ``` #### 三、执行层序遍历 一旦建立了二叉树,则可以通过队列来进行广度优先搜索即层序遍历操作。每次访问一个节点时将其值加入结果列表,并依次将它的孩子节点入队等待处理[^3]。 ```c #include <stdio.h> #include <stdlib.h> #define MAX_SIZE 1000 void levelOrderTraversal(BiTree tree) { if (!tree) return; BiTree queue[MAX_SIZE]; // 队列存储待访问节点 int front = 0, rear = 0; queue[rear++] = tree; while (front != rear) { BiTree node = queue[front++]; printf("%d ", node->val); // 访问当前节点 if (node->left) queue[rear++] = node->left; if (node->right) queue[rear++] = node->right; } } ``` 以上代码展示了如何基于给定的后序遍历序遍历序列恢复原始二叉树,并对其进行层次遍历打印各层上的所有节点值[^1]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值