命运
题解
由于是在树上的祖先,所以到的路径一定是树上一条直下的链。
考虑dp,表示节点的子树内边的状态已经确定,且其上端点的深度最深为时的方案总数。因为一旦一条链未被满足,而子树内的状态又是已经确定的,故只能在到它祖先的链上出现,而这段距离所有超出路径都会涉及到,如果在其外选必定存在路径未被满足,所以只能在这段上选择,使得所有超出的路径都被满足。
转移方程式也很好想,将儿子节点合并到父亲节点时,有:
(可以通过前缀和进行优化)
发现有许多部分分的远远大于,故可以通过虚树进行优化,不过正解不需要这样做。
至于前缀和,可以在线段树上进行处理,dp值的更改也可以变成线段树上的操作,于是每次操作就变成了对线段树进行合并。
由于线段树过多,可以采用动态开点,这样也方便了合并的操作。
源码
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<stack>
#include<map>
using namespace std;
#define MAXN 500005
typedef long long LL;
const LL mo=998244353;
template<typename _T>
void read(_T &x){
_T f=1;x=0;char s=getchar();
while(s>'9'||s<'0'){if(s=='-')f=-1;s=getchar();}
while('0'<=s&&s<='9'){x=(x<<3)+(x<<1)+(s^48);s=getchar();}
x*=f;
}
void add(LL &x,LL y){x+=y;if(x>=mo)x-=mo;}
int n,m,head[MAXN],dep[MAXN],tot,cnt,root[MAXN];
vector<int>G[MAXN];
struct ming{int lson,rson;LL sum,mul;}tr[MAXN<<5];
struct edge{int to,nxt;}e[MAXN<<1];
void addEdge(int u,int v){e[++tot]=(edge){v,head[u]};head[u]=tot;}
void pushdown(int rt){
if(tr[rt].lson){
tr[tr[rt].lson].sum=tr[tr[rt].lson].sum*tr[rt].mul%mo;
tr[tr[rt].lson].mul=tr[tr[rt].lson].mul*tr[rt].mul%mo;
}
if(tr[rt].rson){
tr[tr[rt].rson].sum=tr[tr[rt].rson].sum*tr[rt].mul%mo;
tr[tr[rt].rson].mul=tr[tr[rt].rson].mul*tr[rt].mul%mo;
}
tr[rt].mul=1;
}
void modify(int &rt,int l,int r,int ai){
if(!rt)rt=++cnt;tr[rt].sum=tr[rt].mul=1;
if(l==r)return ;int mid=l+r>>1;
if(ai<=mid)modify(tr[rt].lson,l,mid,ai);
else modify(tr[rt].rson,mid+1,r,ai);
}
LL query(int rt,int l,int r,int al){
if(!rt||r<=al)return tr[rt].sum;
int mid=l+r>>1;LL res=0;pushdown(rt);
if(mid<al)add(res,query(tr[rt].rson,mid+1,r,al));
add(res,query(tr[rt].lson,l,mid,al));
return res;
}
int merge(int x,int y,int l,int r,LL &s1,LL &s2){
if(!x&&!y)return 0;
if(!x||!y){
add(x?s2:s1,tr[x+y].sum);
tr[x+y].mul=tr[x+y].mul*(x?s1:s2)%mo;
tr[x+y].sum=tr[x+y].sum*(x?s1:s2)%mo;
return x+y;
}
if(l==r){
LL tx=tr[x].sum,ty=tr[y].sum;add(s1,ty);
tr[x].sum=(tr[x].sum*s1%mo+tr[y].sum*s2%mo)%mo;
add(s2,tx);return x;
}
pushdown(x);pushdown(y);int mid=l+r>>1;
tr[x].lson=merge(tr[x].lson,tr[y].lson,l,mid,s1,s2);
tr[x].rson=merge(tr[x].rson,tr[y].rson,mid+1,r,s1,s2);
tr[x].sum=(tr[tr[x].lson].sum+tr[tr[x].rson].sum)%mo;
return x;
}
void dfs(int u,int fa){
dep[u]=dep[fa]+1;int mxd=0,siz=G[u].size();
for(int i=0;i<siz;i++)mxd=max(mxd,dep[G[u][i]]);
modify(root[u],0,n,mxd);
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;if(v==fa)continue;
dfs(v,u);LL tmp=query(root[v],0,n,dep[u]),sm=0;
root[u]=merge(root[u],root[v],0,n,tmp,sm);
}
}
signed main(){
read(n);
for(int i=1;i<n;i++){
int u,v;read(u);read(v);
addEdge(u,v);addEdge(v,u);
}
read(m);
for(int i=1;i<=m;i++){
int u,v;read(u);read(v);
G[v].push_back(u);
}
dfs(1,0);printf("%lld\n",query(root[1],0,n,0));
return 0;
}