[JOI2020 Final T3]集邮比赛

集邮比赛

题解

很容易发现,这题是一个区间dp,由于L,T_{i}\leq 10^9显然不能用这两者作为dp的状态。

所以我们定义dp_{i,l,r,0/1}为在已经经过区间为[l,r],其中得到的邮票有i张,现在在左/右侧,所用的时间最短的值。

dp转移方程式也很好得到,这里就不列举出来了。 

时间复杂度O\left( n^3\right ),可以过。

源码

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<stack>
#include<map>
using namespace std;
#define MAXN 205
typedef long long LL;
const LL INF=0x7f7f7f7f7f;
template<typename _T>
void read(_T &x){
	_T f=1;x=0;char s=getchar();
	while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
	while(s>='0'&&s<='9'){x=(x<<3)+(x<<1)+(s^48);s=getchar();}
	x*=f;
} 
LL n,L,dp[MAXN][MAXN][MAXN][2],ans;
struct stamp{LL x,t;}s[MAXN];
int main(){
	///freopen("stamp.in","r",stdin);
	///freopen("stamp.out","w",stdout);
	read(n);read(L);
	for(int i=1;i<=n;i++)read(s[i].x);
	for(int i=1;i<=n;i++)read(s[i].t);
	n++;s[n].x=L;s[n].t=-1;s[0].t=-1;
	for(int i=0;i<=n;i++){
		for(int j=0;j<=n;j++)
			for(int k=0;k<=n;k++)
				dp[i][j][k][0]=dp[i][j][k][1]=INF;
		if(!i)dp[0][0][n][0]=dp[0][0][n][1]=0;
		for(int j=0;j<=n;j++)
				for(int k=n;k>=0;k--){
					if(j==k)continue;
					if(j>0)dp[i][j][k][0]=min(dp[i][j-1][k][0]+s[j].x-s[j-1].x,dp[i][j][k][0]);
					if(j>0)dp[i][j][k][0]=min(dp[i][j-1][k][1]+L-s[k].x+s[j].x,dp[i][j][k][0]);
					if(i&&j>0&&dp[i-1][j-1][k][0]+s[j].x-s[j-1].x<=s[j].t)
						dp[i][j][k][0]=min(dp[i-1][j-1][k][0]+s[j].x-s[j-1].x,dp[i][j][k][0]);
					if(i&&j>0&&dp[i-1][j-1][k][1]+L-s[k].x+s[j].x<=s[j].t)
						dp[i][j][k][0]=min(dp[i-1][j-1][k][1]+L-s[k].x+s[j].x,dp[i][j][k][0]);
					if(k<n)dp[i][j][k][1]=min(dp[i][j][k+1][1]+s[k+1].x-s[k].x,dp[i][j][k][1]);
					if(k<n)dp[i][j][k][1]=min(dp[i][j][k+1][0]+L-s[k].x+s[j].x,dp[i][j][k][1]);
					if(i&&k<n&&dp[i-1][j][k+1][1]+s[k+1].x-s[k].x<=s[k].t)
						dp[i][j][k][1]=min(dp[i-1][j][k+1][1]+s[k+1].x-s[k].x,dp[i][j][k][1]);
					if(i&&k<n&&dp[i-1][j][k+1][0]+L-s[k].x+s[j].x<=s[k].t)
						dp[i][j][k][1]=min(dp[i-1][j][k+1][0]+L-s[k].x+s[j].x,dp[i][j][k][1]);
					if(dp[i][j][k][0]<INF-1)ans=max(ans,1ll*i);
					if(dp[i][j][k][1]<INF-1)ans=max(ans,1ll*i);
					//printf("%d %d %d:%lld %lld\n",i,j,k,dp[i][j][k][0],dp[i][j][k][1]);
				}
	}
	printf("%lld\n",ans);
	return 0;
}

   谢谢!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值