集邮比赛
题解
很容易发现,这题是一个区间dp,由于显然不能用这两者作为dp的状态。
所以我们定义为在已经经过区间为,其中得到的邮票有张,现在在左/右侧,所用的时间最短的值。
dp转移方程式也很好得到,这里就不列举出来了。
时间复杂度,可以过。
源码
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<stack>
#include<map>
using namespace std;
#define MAXN 205
typedef long long LL;
const LL INF=0x7f7f7f7f7f;
template<typename _T>
void read(_T &x){
_T f=1;x=0;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
while(s>='0'&&s<='9'){x=(x<<3)+(x<<1)+(s^48);s=getchar();}
x*=f;
}
LL n,L,dp[MAXN][MAXN][MAXN][2],ans;
struct stamp{LL x,t;}s[MAXN];
int main(){
///freopen("stamp.in","r",stdin);
///freopen("stamp.out","w",stdout);
read(n);read(L);
for(int i=1;i<=n;i++)read(s[i].x);
for(int i=1;i<=n;i++)read(s[i].t);
n++;s[n].x=L;s[n].t=-1;s[0].t=-1;
for(int i=0;i<=n;i++){
for(int j=0;j<=n;j++)
for(int k=0;k<=n;k++)
dp[i][j][k][0]=dp[i][j][k][1]=INF;
if(!i)dp[0][0][n][0]=dp[0][0][n][1]=0;
for(int j=0;j<=n;j++)
for(int k=n;k>=0;k--){
if(j==k)continue;
if(j>0)dp[i][j][k][0]=min(dp[i][j-1][k][0]+s[j].x-s[j-1].x,dp[i][j][k][0]);
if(j>0)dp[i][j][k][0]=min(dp[i][j-1][k][1]+L-s[k].x+s[j].x,dp[i][j][k][0]);
if(i&&j>0&&dp[i-1][j-1][k][0]+s[j].x-s[j-1].x<=s[j].t)
dp[i][j][k][0]=min(dp[i-1][j-1][k][0]+s[j].x-s[j-1].x,dp[i][j][k][0]);
if(i&&j>0&&dp[i-1][j-1][k][1]+L-s[k].x+s[j].x<=s[j].t)
dp[i][j][k][0]=min(dp[i-1][j-1][k][1]+L-s[k].x+s[j].x,dp[i][j][k][0]);
if(k<n)dp[i][j][k][1]=min(dp[i][j][k+1][1]+s[k+1].x-s[k].x,dp[i][j][k][1]);
if(k<n)dp[i][j][k][1]=min(dp[i][j][k+1][0]+L-s[k].x+s[j].x,dp[i][j][k][1]);
if(i&&k<n&&dp[i-1][j][k+1][1]+s[k+1].x-s[k].x<=s[k].t)
dp[i][j][k][1]=min(dp[i-1][j][k+1][1]+s[k+1].x-s[k].x,dp[i][j][k][1]);
if(i&&k<n&&dp[i-1][j][k+1][0]+L-s[k].x+s[j].x<=s[k].t)
dp[i][j][k][1]=min(dp[i-1][j][k+1][0]+L-s[k].x+s[j].x,dp[i][j][k][1]);
if(dp[i][j][k][0]<INF-1)ans=max(ans,1ll*i);
if(dp[i][j][k][1]<INF-1)ans=max(ans,1ll*i);
//printf("%d %d %d:%lld %lld\n",i,j,k,dp[i][j][k][0],dp[i][j][k][1]);
}
}
printf("%lld\n",ans);
return 0;
}