FFT(快速傅里叶变化)学习

快速傅里叶变化

忽然发现自己FFT的博客都已经鸽了一年了,恰好又讲FFT就补了一篇。

关于多项式

多项式是什么垃圾玩意就不用我多说了吧
在平常解决各类数学问题中,我们都很容易发现多项式乘法的影子。
我们现在有两个多项式, f ( x ) = ∑ i = 0 n a i x i , g ( x ) = ∑ i = 0 m b i x i f(x)=\sum_{i=0}^{n} a_{i}x^i,g(x)=\sum_{i=0}^{m} b_{i}x^i f(x)=i=0naixi,g(x)=i=0mbixi
h = f ∗ g h=f*g h=fg,我们如何才能得到 h h h这个多项式的表达式呢?

很明显,设 h ( x ) = ∑ i = 0 n + m c i x i h(x)=\sum_{i=0}^{n+m}c_{i}x^i h(x)=i=0n+mcixi不会有人认为一个最高次项为 n n n的与一个最高次项为 m m m的相乘最高次项不为 n + m n+m n+m,容易发现, c i = ∑ j = 1 m i n ( n , i ) a j b i − j c_{i}=\sum_{j=1}^{min(n,i)}a_{j}b_{i-j} ci=j=1min(n,i)ajbij
但如果这样一个一个求过来的话时间复杂度就达到 O ( n m ) O(nm) O(nm)了,明显还会有更佳的做法。

点值表示法

相信大家在初中阶段都接触过通过几个点还原原函数表达式的 n n n次函数题。
很明显,我们拥有 n + 1 n+1 n+1个点时就可以还原一个 n n n次多项式的表达式。
于是,我们可以先将 f f f g g g分别表示成
( a 0 , f ( a 0 ) ) , . . . , ( a n , f ( a n ) ) (a_{0},f(a_{0})),...,(a_{n},f(a_{n})) (a0,f(a0)),...,(an,f(an)) ( b 0 , g ( b 0 ) ) , . . . , ( b n , g ( b n ) ) (b_{0},g(b_{0})),...,(b_{n},g(b_{n})) (b0,g(b0)),...,(bn,g(bn))
我们先使 a a a数组与 b b b数组相同,发现 h h h也可以表示成这样的形式。
( a 0 , f ( a 0 ) g ( a 0 ) ) , . . . , ( a n , f ( a n ) g ( a n ) ) (a_{0},f(a_{0})g(a_{0})),...,(a_{n},f(a_{n})g(a_{n})) (a0,f(a0)g(a0)),...,(an,f(an)g(an))
我们发现,如果我们用这种方法来求多项式的话就只需要 O ( n ) O(n) O(n)的时间复杂度了。

但悲剧的是,无论是题目还是答案一般需要的都是系数表示法,所以我们还需要将两者之间互相转化。
高斯消元? O ( n 3 ) O(n^3) O(n3)超级逆优化。
拉格朗日插值? O ( n 2 ) O(n^2) O(n2)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值