平均时间复杂度为O(n)的选择算法

该博客介绍了如何在数组中寻找第k小的数,采用快速排序的思想,通过设置键值并分解数组,达到平均时间复杂度为O(n)的效果。算法在不同部分递归查找,最坏情况时间复杂度为O(n^2)。
摘要由CSDN通过智能技术生成

                                                问题:求一列数中第i小的数

求解第k小的数,使用的是快速排序的模型。描述:输入一列数a[0],a[1]...a[n-1]共n个和一个整数i,求第i小的数。分析:

对于数组a[p..r]中寻找第k小的数,首先设置一个键值key,比如key=a[p],然后扫描数组一次将数组a[p...r]分解为小于或等于key和大于key的两部分,设key此时所在位置下标为position,于是小于或者等于key的数有q=position-p+1个,若q==k,则key就是所求的第k小的数,若q>k,则问题转化为求解在a[p..position-1]中的第k大的数,否则就是求解a[position+1...r]中第k-q小的数。此算法时间复杂度分析起来比较复杂,平均为O(n),最坏为O(n^2).

#include<iostream>
using namespace std;
int Randiomized_select(int a[],int n,int i);
int main(){
	/*n=10进行测试*/
	const int n =10;
	int a[n] = { 45, -9, 56, -8, 0, 569, 23, 0, 58, 12 };
	cout << Randiomized_s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值