logistic回归模型【求解参数方法汇总】

http://blog.csdn.net/u014664226/article/details/51685567

Logistic回归模型参数估计方法一般使用最大似然估计(Maximum Likelihood Estimation, MLE)方法。 首先,我们需要定义似然函数。对于二分类问题,假设样本的标签为 $y_i\in \{0,1\}$,且输入特征为 $x_i$,则在 Logistic 回归中,我们假设 $y_i$ 服从 Bernoulli 分布,即: $$p(y_i=1|x_i, \boldsymbol{\theta}) = \sigma(\boldsymbol{\theta}^Tx_i)$$ $$p(y_i=0|x_i, \boldsymbol{\theta}) = 1 - \sigma(\boldsymbol{\theta}^Tx_i)$$ 其中,$\sigma$ 表示 sigmoid 函数,$\boldsymbol{\theta}$ 是待求的参数向量。 对于一个样本 $(x_i, y_i)$,其似然函数为: $$L(\boldsymbol{\theta}; x_i, y_i) = p(y_i|x_i, \boldsymbol{\theta}) = [\sigma(\boldsymbol{\theta}^Tx_i)]^{y_i}[1-\sigma(\boldsymbol{\theta}^Tx_i)]^{1-y_i}$$ 对于整个数据集,其似然函数为: $$L(\boldsymbol{\theta}; X, Y) = \prod_{i=1}^{m}[\sigma(\boldsymbol{\theta}^Tx_i)]^{y_i}[1-\sigma(\boldsymbol{\theta}^Tx_i)]^{1-y_i}$$ 为了方便求解,通常将似然函数取对数,得到对数似然函数: $$\begin{aligned} \log L(\boldsymbol{\theta}; X, Y) &= \sum_{i=1}^{m} \left[ y_i \log \sigma(\boldsymbol{\theta}^Tx_i) + (1-y_i) \log (1-\sigma(\boldsymbol{\theta}^Tx_i)) \right] \\ &= \sum_{i=1}^{m} \left[ y_i \boldsymbol{\theta}^Tx_i - \log(1+e^{\boldsymbol{\theta}^Tx_i}) \right] \end{aligned}$$ 我们的目标是最大化对数似然函数,即: $$\boldsymbol{\theta}^* = \arg\max_{\boldsymbol{\theta}} L(\boldsymbol{\theta}; X, Y)$$ 对数似然函数在 $\boldsymbol{\theta}$ 上是凸函数,因此可以使用梯度上升算法或牛顿法等方法进行求解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值