机器学习 Andrew NG 【学习笔记】
TaoTaoFu
这个作者很懒,什么都没留下…
展开
-
机器学习之正则化(Regularization)
1 The Problem of Overfitting1还是来看预测房价的这个例子,我们先对该数据做线性回归,也就是左边第一张图。如果这么做,我们可以获得拟合数据的这样一条直线,但是,实际上这并不是一个很好的模型。我们看看这些数据,很明显,随着房子面积增大,住房价格的变化趋于稳定或者说越往右越平缓。因此线性回归并没有很好拟合训练数据。我们把此类情况转载 2016-10-21 10:50:24 · 495 阅读 · 0 评论 -
机器学习之神经网络模型-上(Neural Networks: Representation)
本文引至:http://www.cnblogs.com/jianxinzhou/p/4086806.html在这篇文章中,我们一起来讨论一种叫作“神经网络”(Neural Network)的机器学习算法,这也是我硕士阶段的研究方向。我们将首先讨论神经网络的表层结构,在之后再具体讨论神经网络学习算法。神经网络实际上是一个相对古老的算法,并且沉寂了一段时间,不过到了现在它又转载 2016-10-21 11:17:37 · 626 阅读 · 0 评论 -
机器学习之神经网络模型-下(Neural Networks: Representation)
本文引至:http://www.cnblogs.com/jianxinzhou/p/4089123.html3. Model Representation I1神经网络是在模仿大脑中的神经元或者神经网络时发明的。因此,要解释如何表示模型假设,我们不妨先来看单个神经元在大脑中是什么样的。我们的大脑中充满了如上图所示的这样的神经元,神经元是大脑中的细胞。转载 2016-10-21 11:18:55 · 610 阅读 · 0 评论 -
Introduction to Machine Learning
本文引至:http://www.cnblogs.com/jianxinzhou/p/4019949.html引言本系列文章是本人对Andrew NG的机器学习课程的一些笔记,如有错误,请读者以课程为准。在现实生活中,我们每天都可能在不知不觉中使用了各种各样的机器学习算法。例如,当你每一次使用 Google 时,它之所以可以运行良好,其中一个重要原因便是由 Googl转载 2016-10-21 11:08:44 · 421 阅读 · 0 评论 -
机器学习之单变量线性回归(Linear Regression with One Variable)
本文引至:http://www.cnblogs.com/jianxinzhou/p/4020090.html1. 模型表达(Model Representation)我们的第一个学习算法是线性回归算法,让我们通过一个例子来开始。这个例子用来预测住房价格,我们使用一个数据集,该数据集包含俄勒冈州波特兰市的住房价格。在这里,我要根据不同房屋尺寸所售出的价格,画出我的数据集:转载 2016-10-21 11:10:10 · 602 阅读 · 0 评论 -
机器学习之多变量线性回归(Linear Regression with multiple variables)
本文引至:http://www.cnblogs.com/jianxinzhou/p/4055333.html1. Multiple features(多维特征)在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量(变量)——房屋面积x。我们希望使用这个特征量来预测房子的价格。我转载 2016-10-21 11:11:31 · 717 阅读 · 0 评论 -
机器学习之多变量线性回归(Linear Regression with multiple variables)
本文引至:http://www.cnblogs.com/jianxinzhou/p/4055333.html1. Multiple features(多维特征)在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量(变量)——房屋面积x。我们希望使用这个特征量来预测房子的价格。我们的转载 2016-10-21 11:13:21 · 2671 阅读 · 0 评论 -
机器学习之逻辑回归(Logistic Regression)
本文引至:http://www.cnblogs.com/jianxinzhou/p/4070149.html1. Classification这篇文章我们来讨论分类问题(classification problems),也就是说你想预测的变量 y 是一个离散的值。我们会使用逻辑回归算法来解决分类问题。之前的文章中,我们讨论的垃圾邮件分类实际上就是一个分类问题。类似的例子还有转载 2016-10-21 11:14:26 · 496 阅读 · 0 评论