蒟蒻复习之-----并查集

14 篇文章 0 订阅

#蒟蒻复习之-----并查集#


//前两天做了个差分约束的题,结果题解说权值并查集也能做题目
//然后就恶补了下并查集,想到之前一直没想明白的食物链就头疼

##并查集##
概要
并查集作为算法竞赛中较为简单、易用的数据结构,适用于由时序并入的动态集合查找。并查集中的两个主要操作就是“合并集合”与“查找集合

算法
用集合中的某个元素来代表这个集合,该元素称为集合的代表元。
一个集合内的所有元素组织成以代表元为根的树形结构。
在并查集算法中,合并操作是将该元素所在树连接在被合并元素所在树上。
对于查找操作,即是路经查找到树根,确定代表元的过程。

判断两个元素是否属于同一集合,只需要看他们的代表元是否相同即可。

对于不相交集合的操作,一般采用两种启发式优化的方法:

  1. 按秩合并:使包含较少结点的树根指向包含较多结点的树根。
  2. 路径压缩:使路径查找上的每个点都直接指向根结点。

在大多数场景中, 路径压缩 就能满足时间要求!!!

时间复杂度

对于有n项,m次操作的并查集(其中有f次查询),运行时间时间复杂度为:

  1. 朴素的并查集:O(n2)
  2. 带按秩合并的并查集:O(mlgn)
  3. 带路径压缩的并查集:O(n+f⋅(log2+f/nn))
  4. 带路径压缩的按秩合并并查集:O(mα(n))
    其中α(n)为Ackerman函数反函数,对于实际运用中,可认为α(n)≤4

初始化

int init() {
	for(int i = 1; i <= n; i++) f[i] = i;
}

find函数
查找根节点

int find(int x) {
	if(f[x] == x) return f[x];
	f[x] = find(f[x]);	//路径压缩 
	return f[x];
}

merge函数
合并集合

int merge(int x, int y) {
	int t1 = find(x), t2 = find(y);
	if(t1 != t2) f[t2] = t1;//将y的根节点变为f[x];
} 

#应用#
##1.最小生成树(kruskal)##
见博客

##2.扩展域并查集##
//看不懂带权并差集时用的方法,但内存爆炸
[luogu1525] 关押罪犯
最经典的扩展域并查集

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;

const int maxn = 100000 +100;
int n,m;
struct node {
	int u,v,w;
}e[maxn];
int f[maxn * 2];

int read() {
	int x = 0, t = 1;
	char ch = getchar();
	while(ch < '0' || ch >'9'){
		if(ch == '-') t = -1;
		ch = getchar();
	}
	while(ch >= '0' && ch <= '9'){
		x = x * 10 + ch - '0';
		ch = getchar();
	}
	return x * t;
}

bool cmp(node a, node b){
	if(a.w != b.w) return a.w > b.w;
	else if(a.u != b.u) return a.u > b.u;
	else return a.v > b.v;
}

int find(int x){
	if(f[x] == x) return f[x];
	f[x] = find(f[x]);
	return f[x];
}

int merge(int u,int v) {
	int t1 = find(u);
	int t2 = find(v);
	if(t1 != t2) {
		f[t1] = t2;
	}
}

int main(){
	n = read(),m = read();
	for(int i = 1; i <= m; i++) {
		e[i].u = read();
		e[i].v = read();
		e[i].w = read();
	}
	sort(e+1,e+1+m,cmp);
	for(int i = 1; i <= n; i++) {
		f[i] = i;
		f[i+n] = i + n;
	}
	for(int i = 1; i <= m; i++){
		if(find(e[i].u) == find(e[i].v) || find(e[i].u + n) == find(e[i].v + n))  {
			cout<<e[i].w<<endl;
			return 0;
		}
		else {
			merge(e[i].u, e[i].v + n);
			merge(e[i].u + n, e[i].v);
		}
	}
	cout<<'0'<<endl;
	return 0;
}

##3.区间并查集##

  1. 此类问题需要对所有值统计设置相同的初值,但初值的大小一般没有影响。
  2. 对区间[l, r]进行记录时,实际上是对 (l-1, r]操作,即l = l - 1。(即势差是在l-1和r之间)
  3. 在进行路径压缩时,sum[x] += sum[f[x]](因为势差是直接累计到根结点的)
  4. 在合并操作中,对我们需要更新sum[tv](由于tv连接到了tu上),动态更新的公式是sum[tv] = sum[u - 1] - cnt[v] + w;

[luogu2294] [HNOI2005]狡猾的商人

##4.种类并查集##
就是在合并时维护一个rank数组,运用%运算的特殊性质来求解。
详细见 食物链

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值