uva 10375 唯一分解定理

#include <bits/stdc++.h>
using namespace std;
int p, q, r, s;
int main(int argc, char const *argv[])
{
	while (cin >> p >> q >> r >> s)
	{
		q = min(p - q, q); s = min(r - s, s);
		double sum = 1.0;
		for (int i = 1; i <= q || i <= s; i++)
		{
			if (i <= q) sum = sum * (p - q + i) / i;
			if (i <= s) sum = sum * i / (r - s + i);
		}
		printf("%.5f\n", sum);
	}
	return 0;
}


这样的写法很简洁,但这道题的核心在唯一分解定理上

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1E4 + 10;
vector<int>primes;
int elem[maxn], p, q, r, s;
bool prim[maxn];
void getprim()
{
	for (int i = 2; i < maxn; i++)
		if (!prim[i])
		{
			primes.push_back(i);
			for (int j = i * i; j < maxn; j += i)
				prim[j] = 1;
		}
}
void add_factorial(int n, int d)
{
	for (int i = 1; i <= n; i++)
		for (int j = 0, m = i; j < primes.size(); j++)
		{
			while (m % primes[j] == 0)
			{
				m /= primes[j];
				elem[j] += d;
			}
			if (m == 1) break;
		}
}
int main(int argc, char const *argv[])
{
	getprim();
	while (cin >> p >> q >> r >> s)
	{
		memset(elem, 0, sizeof(elem));
		add_factorial(p, 1), add_factorial(q, -1), add_factorial(p - q, -1);
		add_factorial(r, -1), add_factorial(s, 1), add_factorial(r - s, 1);
		double ans = 1;
		for (int i = 0; i < primes.size(); i++)
			ans *= pow(primes[i], elem[i]);
		printf("%.5lf\n", ans);
	}
	return 0;
}
唯一分解定理的运用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值