使用R语言实现基于AIC指标的逐步回归筛选最佳模型
逐步回归是一种基于信息准则的变量选择方法,它通过逐步添加或删除预测变量来构建最佳的回归模型。其中,AIC(赤池信息准则)是一种常用的信息准则,用于衡量模型的拟合优度和复杂度。在本文中,我们将使用R语言的step函数来实现基于AIC指标的逐步回归筛选最佳模型。
首先,我们需要准备数据集。假设我们的数据集包含一个因变量(Y)和多个自变量(X1,X2,X3等)。以下是一个示例数据集的代码:
# 创建示例数据集
set.seed(123)
Y <- rnorm(100)
X1 <- rnorm(100)
X2 <- rnorm(100)
X3 <- rnorm(100)
# 将数据集合并为一个数据框
data <- data.frame(Y, X1, X2, X3)
接下来,我们可以使用step函数来执行逐步回归。step函数通过指定一个完整的模型(包含所有自变量)和一个目标模型(包含要筛选的自变量)来进行逐步回归。以下是使用step函数进行逐步回归的代码:
# 执行逐步回归
full_model <- lm(Y ~ ., data = data) # 完整模型
step_m