R语言时间序列分析-根据aic值选择arima模型

本文通过实例演示了如何使用R语言进行时间序列分析,重点介绍了如何确定最优ARIMA模型的过程,包括差分次数的选择和平稳性的检验,并通过比较AIC值来选择最优模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在上一篇中,探讨了R语言时间序列分析常用步骤,如何比对AIC值判断最优模型?代码和解释如下:

#WWWusage是datasets包自带的每分钟通过服务器连接到因特网的用户数的长度为100的时间序列数据

require(graphics) #画图判断平稳性,调用plot和par函数
win.graph(); plot(WWWusage) #明显带趋势,需要差分

work <- diff(WWWusage,1,1) #对其进行1阶差分,滞后期数lag为1
win.graph(); par(mfrow = c(2, 2)); plot(WWWusage); plot(work) 
acf(work); pacf(work)
tseries::adf.test(work)
#1阶差分后似乎变平缓了,但实际上是不平稳的,
#acf(work)和pacf(work)结果也能看出序列还未平稳。

work <- diff(WWWusage,1,2)
win.graph(); plot(WWWusage); plot(work); acf(work); pacf(work)
tseries::adf.test(work)
#根据tseries函数包的adf.test(work)进行单位根检验可知,2阶差分后序列才真正平稳了。

#创建一个6×6的矩阵,内容为NULL,行列名为p = 0:5, q = 0:5
aics <- matrix(, 6, 6, dimnames = list(p = 0:5, q = 0:5)) 

#使用arima函数,通过循环,将AIC值填入矩阵
require(stats) #调用arima函数

for
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值