CEC2017优化算法目标测试函数综述及其Matlab实现

130 篇文章 ¥59.90 ¥99.00
本文详细介绍了CEC2017优化算法的几个关键测试函数,如Sphere、Rosenbrock、Rastrigin和Griewank函数,并给出了这些函数在Matlab中的实现示例,旨在帮助读者理解和评估优化算法的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CEC2017优化算法目标测试函数综述及其Matlab实现

优化算法是计算机科学中的重要研究领域,用于解决各种实际问题。CEC2017(Competition on Evolutionary Computation)是一个广泛应用于优化算法研究的基准测试套件。本文将综述CEC2017所提供的优化算法目标测试函数,并提供这些函数的Matlab实现。

CEC2017优化算法目标测试函数综述

CEC2017提供了一系列用于测试优化算法性能的函数。这些函数的设计旨在模拟现实世界中的复杂优化问题,并具有不同的特征和挑战。下面将介绍其中一些常用的测试函数:

  1. Sphere Function(SPHERE)

    球函数是一个简单的连续优化函数,其目标是将所有变量的平方和最小化。它是一个凸函数,没有局部最小值,适用于测试优化算法的基本性能。

  2. Rosenbrock’s Function(ROSENBROCK)

    罗森布洛克函数是一个非凸函数,其目标是将一组相关的二次函数的和最小化。它通常被用作优化算法的挑战性测试函数,因为它具有一个长而狭窄的山谷,对算法的搜索能力提出了要求。

  3. Rastrigin’s Function(RASTRIGIN)

    拉斯特林函数是一个具有多个局部最小值的非凸函数。它的目标是将一组相关的正弦函数的和最小化。拉斯特林函数对于测试算法在具有

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值