2024年美国大学生数学建模竞赛(B题)潜水艇预测|建模解析,小鹿学长带队指引全代码文章与思路

我是小鹿学长,就读于上海交通大学,截至目前已经帮200+人完成了建模与思路的构建的处理了~
探索未知深海,鹿鹿学长创新性地融合卡尔曼滤波器与神经网络,构建预测潜水器位置的模型,解决了失联与机械故障风险。独创的多智能体深度强化学习算法使得搜索设备协同工作,提高了寻找失踪潜水器的效率。其智能、高效的方案不仅成功应对问题,更为未来海底探险开启了新篇章。
完整内容可以在文章末尾领取!
在这里插入图片描述

问题要点

问题1:定位 - 潜水器位置预测模型:

  1. 预测不确定性:

    • 水文和地理条件: 海底地理和海水密度的变化可能导致不确定性。
    • 洋流影响: 不同洋流速度和方向可能影响潜水器的位置。
    • 潜水器自身状态: 机械故障或推进丧失可能导致不确定性。
  2. 减小不确定性的信息:

    • 周期性位置报告: 潜水器可以定期向母船发送当前位置、深度和状态报告。
    • 环境传感器数据: 收集海底地形、水温、流速等环境数据有助于更准确的位置预测。
    • 机械健康报告: 实时监测潜水器推进系统和机械组件的健康状态。
  3. 所需设备:

    • 定位系统: GPS、水下声纳等设备用于潜水器位置监测。
    • 环境传感器: 测量海底地形和水文条件的传感器。
    • 通信设备: 用于潜水器与母船之间的定期通信。
    • 健康监测系统: 用于实时监测潜水器机械系统状态。

问题2:准备 - 额外搜索设备的推荐:

  1. 搜索设备推荐:

    • 水下摄像头: 用于实时监测搜寻区域,帮助确定潜水器位置。
    • 潜水员团队: 可以进行水下搜寻,通过视觉确认潜水器位置。
    • 水下机器人: 可以在深海中执行复杂搜索任务。
  2. 成本相关考虑:

    • 设备可用性: 确保所有设备在需要时可用。
    • 维护成本: 考虑设备的维护和修理成本。
    • 准备就绪: 确保设备随时准备进行搜寻任务。
    • 使用成本: 考虑使用设备的费用。
  3. 搜救船额外设备:

    • 救援潜水器: 配备摄像头和操纵工具的潜水器。
    • 紧急通信设备: 用于与失联潜水器进行临时通信。
    • 救生艇: 用于紧急情况下搜寻和搬运潜水器。

问题3:搜索 - 位置模型信息的搜索模型:

  1. 初始部署点和搜索模式:

    • 概率分布: 使用位置模型输出的概率分布确定初始搜寻区域。
    • 最优路径: 基于搜寻效率确定最佳搜索路径。
  2. 时间和搜索结果概率:

    • 时间函数: 模型根据时间和搜寻结果调整潜水器位置的概率。
    • 积累搜索结果: 考虑先前搜索结果,优化搜寻路径。

问题4:推断 - 考虑其他旅游目的地和多潜水器情况的模型扩展:

  1. 其他旅游目的地:

    • 地理差异: 考虑其他目的地的海底地理和环境差异。
    • 调整环境模型: 根据目的地调整环境传感器模型。
  2. 多潜水器模型调整:

    • 协同搜索: 考虑多个潜水器之间的协同搜索策略。
    • 通信协议: 设计潜水器之间的通信协议以避免干扰。

问题一

结合卡尔曼滤波器和循环神经网络(RNN)的思路是在传统的卡尔曼滤波器中引入RNN来处理非线性和时序依赖关系。这样的组合可以充分利用卡尔曼滤波器的状态估计优势和RNN对时序数据的敏感性。
1. 初始化:

  • 卡尔曼滤波器初始化:

    • 设潜水器状态为 x,观测值为 z。
    • 状态方程: xₖ₊₁ = F * xₖ + B * uₖ + wₖ (wₖ为过程噪声)
    • 观测方程: zₖ = H * xₖ + vₖ (vₖ为观测噪声)
  • RNN网络初始化:

    • 设输入序列为 {x₁, x₂, …, xₖ},输出为 yₖ。
    • 使用递归关系: yₖ = RNN(xₖ, yₖ₋₁; θ),其中 θ 为网络参数。

2. 卡尔曼滤波器更新:

  • 预测步骤 (时间更新):

    • x̂ₖ₊₁|ₖ = F * x̂ₖ|ₖ + B * uₖ
    • Pₖ₊₁|ₖ = F * Pₖ|ₖ * Fᵀ + Q (P为协方差矩阵,Q为过程噪声协方差)
  • 测量步骤 (观测更新):

    • Kₖ₊₁ = Pₖ₊₁|ₖ * Hᵀ * (H * Pₖ₊₁|ₖ * Hᵀ + R)⁻¹ (K为卡尔曼增益,R为观测噪声协方差)
    • x̂ₖ₊₁|ₖ₊₁ = x̂ₖ₊₁|ₖ + Kₖ₊₁ * (zₖ₊₁ - H * x̂ₖ₊₁|ₖ)
    • Pₖ₊₁|ₖ₊₁ = (I - Kₖ₊₁ * H) * Pₖ₊₁|ₖ (I为单位矩阵)

3. RNN网络训练和预测:

  • 训练 RNN:

    • 使用历史数据 {x₁, …, xₖ} 和卡尔曼滤波器的状态估计 x̂ₖ 训练 RNN 模型。
    • 训练目标可以是预测下一时刻位置 xₖ₊₁。
  • RNN 预测:

    • 利用训练好的 RNN 模型进行当前时刻位置的预测。
    • yₖ₊₁ = RNN(xₖ, yₖ; θ)

4. 融合:

  • 权重融合:
    • 最终位置估计 x̂ₖ₊₁ = α * x̂ₖ₊₁|ₖ₊₁ + (1 - α) * yₖ₊₁ (α为权重)

5. 迭代更新:

  • 重复上述步骤,不断更新卡尔曼滤波器和RNN模型,以适应新的观测和时序模式。

示例:

假设有一组初始状态 x₀ = [0, 0, 0],观测噪声 R = 0.1,过程噪声 Q = 0.01。

  • 在卡尔曼滤波器预测步骤中,根据状态方程和观测方程,计算状态预测、协方差预测、卡尔曼增益等。
  • 在RNN模型中,输入历史位置数据进行训练,并根据当前时刻的状态进行预测。
  • 通过卡尔曼滤波器和RNN的预测结果,进行加权融合得到最终位置估计。
import numpy as np
import tensorflow as tf
from filterpy.kalman import KalmanFilter
import matplotlib.pyplot as plt

# 生成模拟数据
def generate_data(num_points):
    true_positions = np.linspace(0, 10, num_points)
    measurements = true_positions + np.random.normal(0, 0.1, num_points)
    return true_positions, measurements

# 卡尔曼滤波器初始化
def initialize_kalman_filter():
    kf = KalmanFilter(dim_x=2, dim_z=1)
    kf.F = np.array([[1, 1], [0, 1]])  # 状态转移矩阵
    kf.H = np.array([[1, 0]])  # 观测矩阵
    kf.P *= 1e4  # 初始协方差矩阵
    kf.R = 0.1  # 观测噪声协方差
    kf.Q = 0.01 * np.eye(2)  # 过程噪声协方差矩阵
    return kf

# 循环神经网络模型
def create_rnn_model(input_shape):
    model = tf.keras.Sequential([
        tf.keras.layers.LSTM(50, input_shape=input_shape, return_sequences=True),
        tf.keras.layers.Dense(1)
    ])
    model.compile(optimizer='adam', loss='mse')
    return model

# 数据预处理函数
def preprocess_data(true_positions, measurements):
    inputs, outputs = [], []
    for i in range(len(true_positions) - 1):
        inputs.append(measurements[i:i+1])
        outputs.append(true_positions[i+1])
    return np.array(inputs), np.array(outputs)

# 主程序
def main():
    num_points = 100
    true_positions, measurements = generate_data(num_points)

    # 数据预处理
#省略部分见完整版
        kf.update(np.array([measurements[i]]))
        kf_states.append(kf.x)
        kf_predictions.append(kf.x[0])

    # 数据预处理为适用于RNN的形式
    rnn_inputs = np.reshape(measurements[:-1], (len(measurements)-1, 1, 1))
    rnn_outputs = true_positions[1:]

    # 创建并训练RNN模型
    rnn_model = create_rnn_model(input_shape=(1, 1))
    rnn_model.fit(rnn_inputs, rnn_outputs, epochs=50, verbose=0)

    # 使用RNN模型进行预测
    rnn_predictions = rnn_model.predict(rnn_inputs)

    # 加权融合卡尔曼滤波器和RNN的预测结果
    alpha = 0.5
    final_predictions = alpha * np.array(kf_predictions) + (1 - alpha) * np.squeeze(rnn_predictions)

    # 绘制结果
    plt.plot(true_positions[1:], label='True Positions')
    plt.scatter(range(num_points - 1), measurements[:-1], label='Measurements', marker='x')
    plt.plot(range(num_points - 1), kf_predictions, label='Kalman Filter Predictions')
    plt.plot(range(1, num_points), np.squeeze(rnn_predictions), label='RNN Predictions')
    plt.plot(range(num_points - 1), final_predictions, label='Weighted Fusion')
    plt.legend()
    plt.show()

if __name__ == "__main__":
    main()

这段代码中,我们使用一个简单的状态空间模型,其中潜水器的位置是通过卡尔曼滤波器进行估计的。然后,我们使用一个简单的循环神经网络(LSTM)来学习时间序列的模式。最后,通过加权融合卡尔曼滤波器和循环神经网络的预测结果来得到最终的位置估计。
可视化方法:
对于问题一,你可以画一系列图表来展示模型的性能和预测结果。以下是一些建议的图表:

  1. 真实位置和测量值的对比图:

    • X轴表示时间,Y轴表示位置。
    • 画出真实的潜水器位置,用散点图表示测量值。
  2. 卡尔曼滤波器和RNN预测结果的对比图:

    • X轴表示时间,Y轴表示位置。
    • 画出卡尔曼滤波器的位置预测结果曲线。
    • 画出RNN的位置预测结果曲线。
  3. 卡尔曼滤波器、RNN和加权融合的最终预测结果对比图:

    • X轴表示时间,Y轴表示位置。
    • 画出卡尔曼滤波器的位置预测结果曲线。
    • 画出RNN的位置预测结果曲线。
    • 画出加权融合后的最终位置预测结果曲线。
  4. 误差分析图:

    • X轴表示时间,Y轴表示误差。
    • 画出每个时刻卡尔曼滤波器、RNN和加权融合的预测误差。
    • 这可以是绝对误差或者相对误差。
  5. 训练过程中损失的变化图:

    • X轴表示训练的迭代次数,Y轴表示损失。
    • 对于RNN模型,画出每个迭代时的训练损失变化。

这些图表可以帮助你直观地了解模型的性能,对比不同方法的优劣,并展示模型在不同时间点的表现。在报告中,你可以使用这些图表来支持你的结论和建议。
代码需要在有Matplotlib和NumPy的环境中运行。

import numpy as np
import matplotlib.pyplot as plt
from filterpy.kalman import KalmanFilter
import tensorflow as tf

# ... (前面的数据生成、卡尔曼滤波器初始化等代码)

# 生成图表
def generate_plots(true_positions, measurements, kf_predictions, rnn_predictions, final_predictions):
    # 真实位置和测量值对比图
    plt.figure(figsize=(10, 5))
    plt.plot(true_positions, label='True Positions', color='blue')
    plt.scatter(range(len(measurements)), measurements, label='Measurements', marker='x', color='red')
    plt.xlabel('Time')
    plt.ylabel('Position')
    plt.legend()
    plt.title('True Positions vs Measurements')
    plt.show()

    # 卡尔曼滤波器和RNN预测结果对比图
    plt.figure(figsize=(10, 5))
    plt.plot(true_positions[1:], label='True Positions', color='blue')
    plt.plot(range(len(kf_predictions)), kf_predictions, label='Kalman Filter Predictions', linestyle='dashed', color='green')
    plt.plot(range(1, len(rnn_predictions)+1), rnn_predictions, label='RNN Predictions', linestyle='dashed', color='orange')
    plt.xlabel('Time')
    plt.ylabel('Position')
    plt.legend()
    plt.title('Kalman Filter and RNN Predictions')
    plt.show()

    # 最终预测结果对比图
    plt.figure(figsize=(10, 5))
    plt.plot(true_positions[1:], label='True Positions', color='blue')
    plt.plot(range(len(final_predictions)), final_predictions, label='Weighted Fusion', linestyle='dashed', color='purple')
    plt.xlabel('Time')
    plt.ylabel('Position')
    plt.legend()
    plt.title('Weighted Fusion Predictions')
    plt.show()

    # 误差分析图
    kf_errors = np.abs(true_positions[1:] - kf_predictions)
    rnn_errors = np.abs(true_positions[1:] - rnn_predictions)
    fusion_errors = np.abs(true_positions[1:] - final_predictions)

    plt.figure(figsize=(10, 5))
    plt.plot(range(len(kf_errors)), kf_errors, label='Kalman Filter Error', color='green')
    plt.plot(range(len(rnn_errors)), rnn_errors, label='RNN Error', color='orange')
    plt.plot(range(len(fusion_errors)), fusion_errors, label='Weighted Fusion Error', color='purple')
    plt.xlabel('Time')
    plt.ylabel('Error')
    plt.legend()
    plt.title('Prediction Errors Over Time')
    plt.show()

# 主程序
def main():
    num_points = 100
    true_positions, measurements = generate_data(num_points)

    # ... (前面的初始化卡尔曼滤波器、RNN模型等代码)

    # 卡尔曼滤波器状态和预测值列表
    kf_states, kf_predictions = [], []

    # 循环处理每个时刻的数据
    for i in range(len(true_positions) - 1):
        # 卡尔曼滤波器更新
        kf.predict()
        kf.update(np.array([measurements[i]]))
        kf_states.append(kf.x)
        kf_predictions.append(kf.x[0])

    # 数据预处理为适用于RNN的形式
    rnn_inputs = np.reshape(measurements[:-1], (len(measurements)-1, 1, 1))
    rnn_outputs = true_positions[1:]

    # ... (前面的创建并训练RNN模型等代码)

    # 使用RNN模型进行预测
    rnn_predictions = rnn_model.predict(rnn_inputs)

    # 加权融合卡尔曼滤波器和RNN的预测结果
    alpha = 0.5
    final_predictions = alpha * np.array(kf_predictions) + (1 - alpha) * np.squeeze(rnn_predictions)

    # 生成图表
    generate_plots(true_positions, measurements, kf_predictions, np.squeeze(rnn_predictions), final_predictions)

if __name__ == "__main__":
    main()

这些图表代码将生成真实位置和测量值的对比图、卡尔曼滤波器和RNN预测结果的对比图、卡尔曼滤波器、RNN和加权融合的最终预测结果对比图,以及误差分析图。
在这里插入图片描述

问题二

• 准备 - 如果需要,您会推荐公司携带哪些额外的搜索设备以进行部署?您可以考虑不同类型的设备,但必须考虑与这些设备的可用性、维护、准备和使用相关的成本。如果需要,搜救船还需要带来什么额外的设备来协助搜救?
使用深度强化学习(Deep Reinforcement Learning,DRL)来解决问题二需要进行合适的建模。在这种情况下,我们可以将问题建模为一个强化学习问题,其中搜救船是智能体,目标是找到潜水器。以下是一个简化的建模思路:

  1. 状态(State):

    • 搜救船在海域中的位置、搜救设备的状态、当前的环境信息(例如海流、水温等)等。
  2. 动作(Action):

    • 搜救船可以执行的动作,如向特定方向航行、使用搜救设备、改变搜索模式等。
  3. 奖励(Reward):

    • 搜救船根据执行的动作和当前状态获得的奖励。奖励的设计应该鼓励搜救船尽快找到潜水器。
  4. 状态转移(State Transition):

    • 搜救船执行动作后,环境可能发生变化,搜救船的状态也会随之变化。

基于上述思路,可以使用深度强化学习中的深度Q网络(Deep Q Network,DQN)来建模。以下是一些具体的公式和步骤:

Q值函数(Q-function):
Q ( s , a ) = E [ ∑ t = 0 ∞ γ t r t ∣ s 0 = s , a 0 = a ] Q(s, a) = \mathbb{E} \left[ \sum_{t=0}^{\infty} \gamma^t r_t \mid s_0 = s, a_0 = a \right] Q(s,a)=E[t=0γtrts0=s,a0=a]

其中:

  • Q ( s , a ) Q(s, a) Q(s,a) 是在状态 s s s 执行动作 a a a 的期望累积奖励。
  • γ \gamma γ 是折扣因子,用于平衡当前奖励和未来奖励的重要性。
  • r t r_t rt 是在时间步 t t t 获得的奖励。

DQN损失函数:
L ( θ ) = E [ ( r + γ max ⁡ a ′ Q ( s ′ , a ′ ; θ − ) − Q ( s , a ; θ ) ) 2 ] \mathcal{L}(\theta) = \mathbb{E} \left[ \left( r + \gamma \max_{a'} Q(s', a'; \theta^-) - Q(s, a; \theta) \right)^2 \right] L(θ)=E[(r+γamaxQ(s,a;θ)Q(s,a;θ))2]

其中:

  • θ \theta θ 是Q网络的参数。
  • θ − \theta^- θ 是目标Q网络的参数。
  • s ′ s' s 是执行动作 a a a 后的下一个状态。
  • max ⁡ a ′ Q ( s ′ , a ′ ; θ − ) \max_{a'} Q(s', a'; \theta^-) maxaQ(s,a;θ) 是目标Q值。

训练步骤:

  1. 初始化深度Q网络和目标Q网络。
  2. 从初始状态开始,选择动作 a a a
  3. 执行动作,观察奖励 r r r 和下一个状态 s ′ s' s
  4. 将经验 ( s , a , r , s ′ ) (s, a, r, s') (s,a,r,s) 存储到经验回放缓冲区。
  5. 从经验回放缓冲区中随机采样一批数据。
  6. 计算损失并进行梯度下降更新深度Q网络参数。
  7. 定期更新目标Q网络的参数。

通过重复执行上述步骤,深度Q网络可以学习到在不同状态下选择最优动作的策略,从而搜救船可以在海域中高效地搜索潜水器。

import numpy as np
import tensorflow as tf
from collections import deque

# 定义深度Q网络
class DQNNetwork(tf.keras.Model):
    def __init__(self, num_actions):
        super(DQNNetwork, self).__init__()
        self.dense1 = tf.keras.layers.Dense(64, activation='relu')
        self.dense2 = tf.keras.layers.Dense(64, activation='relu')
        self.output_layer = tf.keras.layers.Dense(num_actions, activation=None)

    def call(self, state):
        x = self.dense1(state)
        x = self.dense2(x)
        return self.output_layer(x)

# 定义深度Q网络的目标网络
class TargetDQNNetwork(tf.keras.Model):
    def __init__(self, num_actions):
        super(TargetDQNNetwork, self).__init__()
        self.dense1 = tf.keras.layers.Dense(64, activation='relu')
        self.dense2 = tf.keras.layers.Dense(64, activation='relu')
        self.output_layer = tf.keras.layers.Dense(num_actions, activation=None)

    def call(self, state):
        x = self.dense1(state)
        x = self.dense2(x)
        return self.output_layer(x)

# 定义深度Q学习智能体
#详细部分见完整版

    def choose_action(self, state):
        if np.random.rand() <= self.epsilon:
            return np.random.choice(self.num_actions)
        q_values = self.model.predict(state)
        return np.argmax(q_values[0])

    def remember(self, state, action, reward, next_state, done):
        self.replay_buffer.append((state, action, reward, next_state, done))

    def experience_replay(self, batch_size):
        if len(self.replay_buffer) < batch_size:
            return

        minibatch = np.array(random.sample(self.replay_buffer, batch_size))
        states = np.vstack(minibatch[:, 0])
        actions = minibatch[:, 1]
        rewards = minibatch[:, 2]
        next_states = np.vstack(minibatch[:, 3])
        dones = minibatch[:, 4]

        targets = rewards + self.gamma * np.max(self.target_model.predict(next_states), axis=1) * (1 - dones)
        q_values = self.model.predict(states)
        q_values[range(batch_size), actions] = targets

        with tf.GradientTape() as tape:
            loss = tf.keras.losses.mean_squared_error(targets, q_values)
        gradients = tape.gradient(loss, self.model.trainable_variables)
        self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))

    def update_target_network(self):
        self.target_model.set_weights(self.model.get_weights())

# 主训练循环
def train_dqn(env, agent, episodes, batch_size):
    for episode in range(episodes):
        state = env.reset()
        state = np.reshape(state, [1, agent.state_size])
        total_reward = 0

        while True:
            action = agent.choose_action(state)
            next_state, reward, done, _ = env.step(action)
            next_state = np.reshape(next_state, [1, agent.state_size])

            agent.remember(state, action, reward, next_state, done)
            state = next_state
            total_reward += reward

            if done:
                agent.experience_replay(batch_size)
                agent.update_target_network()
                break

        # 在每个回合结束时降低探索率
        agent.epsilon = max(agent.epsilon_min, agent.epsilon * agent.epsilon_decay)

        print(f"Episode: {episode + 1}, Total Reward: {total_reward}")

# 创建环境和智能体
env = # 创建你的搜救环境
state_size = # 定义状态空间的大小
num_actions = # 定义动作空间的大小
agent = DQNAgent(num_actions, state_size)

# 训练DQN智能体
train_dqn(env, agent, episodes=100, batch_size=32)

问题二涉及准备阶段,主要是关于推荐公司携带哪些额外的搜索设备以进行部署。以下是一些与问题二相关的图表示例:

  1. 设备成本分析图:

    • 横轴:不同类型的搜索设备。
    • 纵轴:设备的成本。
    • 可以使用柱状图或折线图展示不同设备的成本,帮助公司权衡不同设备的经济性。
  2. 设备可用性图:

    • 横轴:不同类型的搜索设备。
    • 纵轴:设备的可用性指标,如平均故障间隔时间(MTBF)。
    • 可以使用条形图或雷达图展示不同设备的可用性,以便评估其在搜救任务中的稳定性和持续性。
  3. 设备维护频率图:

    • 横轴:不同类型的搜索设备。
    • 纵轴:设备的维护频率,即需要进行维护的平均时间。
    • 可以使用柱状图或折线图展示不同设备的维护频率,帮助公司了解设备的维护需求。
  4. 准备阶段总体成本图:

    • 横轴:不同阶段的准备工作。
    • 纵轴:总体成本,包括设备成本、维护成本等。
    • 可以使用堆叠柱状图或面积图展示不同阶段的总体成本,帮助公司了解准备阶段的经济投入。
  5. 设备使用准备度图:

    • 横轴:不同类型的搜索设备。
    • 纵轴:设备的使用准备度,即设备在短时间内能够投入使用的程度。
    • 可以使用条形图或雷达图展示不同设备的使用准备度,以评估其在需要紧急行动时的可靠性。
import matplotlib.pyplot as plt
import numpy as np

# 示例数据
devices = ['Sonar', 'Drones', 'ROV', 'Underwater Cameras']
device_costs = [50000, 20000, 100000, 15000]
device_availability = [0.95, 0.85, 0.90, 0.80]
device_maintenance = [40, 30, 50, 20]

# 设备成本分析图(柱状图)
plt.figure(figsize=(10, 6))
plt.bar(devices, device_costs, color='blue')
plt.xlabel('Devices')
plt.ylabel('Cost ($)')
plt.title('Device Costs Analysis')
plt.show()

# 设备可用性图(折线图)
plt.figure(figsize=(10, 6))
plt.plot(devices, device_availability, marker='o', linestyle='-', color='green')
plt.xlabel('Devices')
plt.ylabel('Availability')
plt.title('Device Availability Analysis')
plt.ylim(0, 1)
plt.show()

# 设备维护频率图(柱状图)
plt.figure(figsize=(10, 6))
plt.bar(devices, device_maintenance, color='orange')
plt.xlabel('Devices')
plt.ylabel('Maintenance Frequency (hours)')
plt.title('Device Maintenance Frequency Analysis')
plt.show()

在这里插入图片描述

问题三

• 搜索 - 开发一个模型,该模型将使用您的位置模型的信息来推荐设备的初始部署点和搜索模式,以使寻找失踪潜水器的时间最小化。确定随时间和累积搜索结果的函数中找到潜水器的概率。
问题三求解思路:

问题三涉及开发一个模型,该模型将使用位置模型的信息来推荐设备的初始部署点和搜索模式,以最小化寻找失踪潜水器的时间,并确定随时间和累积搜索结果的函数中找到潜水器的概率。我们将使用深度Q网络(DQN)来建模这个问题。

步骤1: 定义状态表示:

  • 状态表示为潜水器的位置、海域地形、水流等信息,即 (s_t)。

步骤2: 定义动作空间:

  • 动作空间包括选择特定设备、确定设备的部署点,以及指定搜索路径和模式,即 (a_t)。

步骤3: Q值计算:

  • 使用深度Q网络计算当前状态下执行每个动作的Q值: (Q(s_t, a_t; \theta))。

步骤4: 选择动作:

  • 根据当前Q值选择动作,采用贪心策略。

步骤5: 与环境交互:

  • 执行选择的动作,与环境交互,观察下一个状态 (s_{t+1}) 和奖励 (r_t)。

步骤6: 目标Q值计算:

  • 计算目标Q值: (y_t = r_t + \gamma \max_a Q(s_{t+1}, a; \theta^-)),其中 (\gamma) 是折扣因子,(\theta^-) 表示目标Q网络的参数。

步骤7: 定义损失函数:

  • 定义损失函数,使用均方误差: (L(\theta) = \frac{1}{2} \mathbb{E}[(y_t - Q(s_t, a_t; \theta))^2])。

步骤8: 优化:

  • 通过梯度下降法,更新Q网络的参数,最小化损失函数。

步骤9: 重复训练:

  • 重复以上步骤,直到达到预定的训练轮次或其他停止条件。

代码示例:

以下是基于PyTorch的简化代码示例:

import torch
import torch.nn as nn
import torch.optim as optim

class DQNNetwork(nn.Module):
    def __init__(self, state_size, action_size):
        super(DQNNetwork, self).__init__()
        self.fc1 = nn.Linear(state_size, 64)
        self.fc2 = nn.Linear(64, 64)
        self.fc3 = nn.Linear(64, action_size)

    def forward(self, state):
        x = torch.relu(self.fc1(state))
        x = torch.relu(self.fc2(x))
        return self.fc3(x)

# 定义深度Q网络
state_size = # 状态空间大小
action_size = # 动作空间大小
dqn_network = DQNNetwork(state_size, action_size)

# 定义优化器
optimizer = optim.Adam(dqn_network.parameters(), lr=0.001)

# 定义损失函数
criterion = nn.MSELoss()

# 训练DQN模型
#见完整版

    while not done:
        # 选择动作
        action = dqn_network.choose_action(state)

        # 与环境交互,观察下一个状态和奖励
        next_state, reward, done, _ = env.step(action)

        # 计算目标Q值
        target_q_value = reward + gamma * torch.max(dqn_network(next_state).detach())

        # 计算损失
        current_q_value = dqn_network(state)[action]
        loss = criterion(current_q_value, target_q_value)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        state = next_state
        total_reward += reward

    print(f"Episode: {episode + 1}, Total Reward: {total_reward}")

在解决问题三时,你可以创建多个图表以可视化模型的性能、搜索过程和结果。以下是一些可能有用的图表:

  1. 训练曲线:

    • 绘制训练过程中每个轮次(episode)的总奖励,以观察模型是否在学习过程中改善。
    • 示例代码:
      import matplotlib.pyplot as plt
      
      # 在每个episode结束后记录总奖励
      rewards = []
      
      for episode in range(num_episodes):
          # ...(训练过程)
      
          rewards.append(total_reward)
      
      # 绘制训练曲线
      plt.plot(range(1, num_episodes + 1), rewards)
      plt.xlabel('Episode')
      plt.ylabel('Total Reward')
      plt.title('Training Curve')
      plt.show()
      
  2. 动作选择分布:

    • 可视化模型在每个状态下选择的动作分布,以了解模型的策略。
    • 示例代码:
      import seaborn as sns
      
      # 获取每个状态下的动作概率
      action_probabilities = []
      
      for state in all_states:
          # ...(根据模型选择动作的过程)
      
          action_probabilities.append(model(state).softmax(dim=-1).detach().numpy())
      
      # 绘制动作选择分布
      sns.histplot(action_probabilities, kde=True)
      plt.xlabel('Action Probability')
      plt.ylabel('Frequency')
      plt.title('Action Selection Distribution')
      plt.show()
      
  3. 搜索路径示意图:

    • 如果适用,绘制模型推荐的搜索路径示意图,以展示搜救设备的初始部署点和演化过程。
    • 示例代码:
      import networkx as nx
      
      # 创建图表示搜索路径
      G = nx.DiGraph()
      
      # 添加节点和边表示设备的部署和搜索过程
      # ...
      
      # 绘制搜索路径图
      pos = nx.spring_layout(G)  # 选择布局方式
      nx.draw(G, pos, with_labels=True)
      plt.title('Search Path')
      plt.show()
      

在这里插入图片描述

问题四

• 推断 - 您的模型如何扩展以考虑其他旅游目的地,如加勒比海?您的模型将如何更改以考虑在同一一般区域移动的多个潜水器?

问题四涉及推断和模型扩展,主要考虑如何使用多智能体强化学习(MARL)算法以及如何在考虑其他旅游目的地(例如加勒比海)的情况下扩展模型。以下是整体思路:

多智能体强化学习(MARL)算法详解

在多智能体环境中,我们使用多智能体深度强化学习(MARL)算法,具体来说,我们选择MADDPG算法进行推断和模型扩展。

1. 状态表示扩展:
  • 原始状态表示: s t i s_t^i sti 表示第 i i i 个潜水器在时刻 t t t 的状态。
  • 扩展状态表示: 考虑加入加勒比海的特征,我们扩展状态为 s t i = [ s t i , local , s t i , Caribbean ] s_t^i = [s_t^{i, \text{local}}, s_t^{i, \text{Caribbean}}] sti=[sti,local,sti,Caribbean],其中 s t i , local s_t^{i, \text{local}} sti,local 表示本地环境特征, s t i , Caribbean s_t^{i, \text{Caribbean}} sti,Caribbean 表示加勒比海特征。
2. 动作空间调整:
  • 原始动作表示: a t i a_t^i ati 表示第 i i i 个潜水器在时刻 t t t 的动作。
  • 扩展动作表示: 根据任务的不同,调整动作空间,可能包括设备的部署、搜索路径规划等,即 a t i = [ a t i , deploy , a t i , search ] a_t^i = [a_t^{i, \text{deploy}}, a_t^{i, \text{search}}] ati=[ati,deploy,ati,search]
3. MARL算法公式:
  • 在MADDPG算法中,每个潜水器的动作和策略都受到其他潜水器的影响,Q值计算和策略更新如下:

    • Q值计算: Q i ( s t 1 , a t 1 , … , s t n , a t n ) Q^i(s_t^1, a_t^1, \ldots, s_t^n, a_t^n) Qi(st1,at1,,stn,atn) 表示第 i i i 个潜水器的Q值,考虑其他潜水器的状态和动作。
    • 策略更新: 使用梯度上升法更新每个潜水器的策略网络参数。
  • 具体而言,在MADDPG中,Q值的计算和策略更新可通过以下公式表示:

    • Q值计算:
      Q i ( s t 1 , a t 1 , … , s t n , a t n ) = Q i ( s t i , a t i , a ˉ t − i ) Q^i(s_t^1, a_t^1, \ldots, s_t^n, a_t^n) = Q^i(s_t^i, a_t^i, \bar{a}_t^{-i}) Qi(st1,at1,,stn,atn)=Qi(sti,ati,aˉti)
      其中, a ˉ t − i \bar{a}_t^{-i} aˉti 表示所有其他潜水器的动作。

    • 策略更新:
      ∇ θ i J ≈ E s t i , a ˉ t − i ∼ D [ ∇ θ i Q i ( s t i , a t i , a ˉ t − i ) ∇ a i π i ( a t i ∣ s t i ) ] \nabla_{\theta^i} J \approx \mathbb{E}_{s_t^i, \bar{a}_t^{-i} \sim \mathcal{D}} \left[\nabla_{\theta^i} Q^i(s_t^i, a_t^i, \bar{a}_t^{-i}) \nabla_{a^i} \pi^i(a_t^i|s_t^i)\right] θiJEsti,aˉtiD[θiQi(sti,ati,aˉti)aiπi(atisti)]
      其中, D \mathcal{D} D 表示经验缓冲区, J J J 表示性能指标。

4. 奖励函数设计:
  • 设计奖励函数,鼓励潜水器协同工作和有效地执行搜索任务。奖励函数可能包括对整个系统性能的奖励以及对单个潜水器任务完成的奖励。例如,总体奖励可以是各个潜水器奖励的加权和。
5. 通信机制实施:
  • 引入通信机制,使潜水器能够共享信息、协调行动。具体实施通信机制可通过在状态表示中添加通信信息,例如潜水器之间的距离和方向。
6. 环境适应性:
  • 使模型具有适应性,能够在不同的旅游目的地中执行搜索任务,包括加勒比海等地。状态表示的扩展和动作空间的调整可以帮助模型适应不同的环境。
7. 模型训练和评估:
  • 在扩展后的环境中使用MARL算法进行模型
    训练,确保潜水器能够协同工作,有效地执行搜索任务。评估模型的性能时,考虑多个潜水器的协同行动和系统整体性能。

这个过程是一个动态的迭代过程,通过不断地观察和学习,潜水器可以逐渐改进其策略,以更好地适应不同的环境和任务。

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np

class Actor(nn.Module):
    def __init__(self, state_size, action_size):
        super(Actor, self).__init__()
        self.fc1 = nn.Linear(state_size, 64)
        self.fc2 = nn.Linear(64, action_size)
        self.relu = nn.ReLU()

    def forward(self, state):
        x = self.relu(self.fc1(state))
        x = self.fc2(x)
        return x

#省略部分见完整版

class MADDPG:
    def __init__(self, num_agents, state_size, action_size):
        self.actors = [Actor(state_size, action_size) for _ in range(num_agents)]
        self.critics = [Critic(state_size + num_agents * action_size, action_size) for _ in range(num_agents)]
        self.actor_optimizers = [optim.Adam(actor.parameters(), lr=0.001) for actor in self.actors]
        self.critic_optimizers = [optim.Adam(critic.parameters(), lr=0.001) for critic in self.critics]
        self.gamma = 0.99

    def choose_action(self, states):
        actions = [actor(torch.Tensor(state)).detach().numpy() for actor, state in zip(self.actors, states)]
        return actions

    def update(self, experiences):
        for agent in range(num_agents):
            states, actions, rewards, next_states, dones = experiences[agent]

            all_next_actions = [self.actors[i](torch.Tensor(next_states[i])).detach().numpy() for i in range(num_agents)]
            all_next_actions[agent] = actions[agent]
            all_next_actions = np.concatenate(all_next_actions, axis=-1)
            all_next_states = np.concatenate([next_states[i] for i in range(num_agents)], axis=-1)
            next_Q = self.critics[agent](torch.Tensor(all_next_states), torch.Tensor(all_next_actions)).detach().numpy()

            target_Q = rewards[agent] + self.gamma * next_Q * (1 - dones)

            current_Q = self.critics[agent](torch.Tensor(np.concatenate([states[agent], actions[agent]], axis=-1)))
            critic_loss = nn.MSELoss()(current_Q, torch.Tensor(target_Q))

            self.critic_optimizers[agent].zero_grad()
            critic_loss.backward()
            self.critic_optimizers[agent].step()

            current_actions = [self.actors[i](torch.Tensor(states[i])).detach().numpy() for i in range(num_agents)]
            current_actions[agent] = actions[agent]
            current_actions = np.concatenate(current_actions, axis=-1)
            actor_loss = -self.critics[agent](torch.Tensor(np.concatenate([states[agent], current_actions], axis=-1))).mean()

            self.actor_optimizers[agent].zero_grad()
            actor_loss.backward()
            self.actor_optimizers[agent].step()

# 示例训练过程
num_agents = 3
state_size = 5
action_size = 2
maddpg = MADDPG(num_agents, state_size, action_size)

num_episodes = 1000

for episode in range(num_episodes):
    states = [np.random.rand(state_size) for _ in range(num_agents)]
    actions = maddpg.choose_action(states)
    next_states = [np.random.rand(state_size) for _ in range(num_agents)]
    rewards = [np.random.rand() for _ in range(num_agents)]
    dones = [np.random.choice([True, False]) for _ in range(num_agents)]

    experiences = [(states[i], actions[i], rewards[i], next_states[i], dones[i]) for i in range(num_agents)]
    maddpg.update(experiences)

对于问题四,考虑到涉及多个潜水器和不同旅游目的地,可以绘制以下类型的图表来进行可视化:

  1. 潜水器轨迹图: 绘制潜水器在不同时间点的轨迹,以显示它们在海底的移动路径。这可以帮助观察潜水器在搜索任务中的行为。

  2. 搜索设备部署图: 如果有额外的搜索设备,可以绘制它们在海底的部署图,显示它们在何处执行搜索任务。

  3. 搜索效率曲线: 绘制搜索任务的效率曲线,显示随着时间的推移潜水器和搜索设备找到失踪潜水器的概率变化。这可以是累积概率曲线或时间序列曲线。

  4. 多智能体协同图: 如果有多个潜水器,可以绘制它们之间的协同效应图,显示它们如何共同工作来优化搜索任务。

  5. 不同目的地比较图: 如果模型被扩展用于不同的旅游目的地,可以绘制不同目的地下搜索任务的比较图,以观察模型在不同环境下的表现。

这些图表可以帮助直观地理解潜水器搜索任务的进行和效果,以及在不同情况下模型的性能表现。

在这里插入图片描述
更多内容可以点击下方名片详细了解,让小鹿学长带你冲刺美赛夺奖之路!
敬请期待我们的努力所做出的工作!记得关注 鹿鹿学长呀!

  • 29
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值