该博客记录一些细点。
1.数列存在极限数列,但函数不存在极限函数,因为函数存在无数种趋近情况:
例如对于f(x)=x,不存在极限;而因此不能简单地讨论函数是否有极限。
而数组有确定的下标值,对于其中地某一个数组下标,都有确切的值与它对应,只有数组单方向无限延申的时候才有无限趋近的可能。
2.对于,函数剧烈波动。
该博客记录一些细点。
1.数列存在极限数列,但函数不存在极限函数,因为函数存在无数种趋近情况:
例如对于f(x)=x,不存在极限;而因此不能简单地讨论函数是否有极限。
而数组有确定的下标值,对于其中地某一个数组下标,都有确切的值与它对应,只有数组单方向无限延申的时候才有无限趋近的可能。
2.对于,函数剧烈波动。