多维分析是什么?该怎么做?

多维分析是指在分析型系统中,用户可以通过拖拽维度(Dimension)来汇总度量(Measure)以方便使用者可以从不同角度观察数据。如果从报表的角度来看,多维分析类似自助报表,业务人员基于一个事先准备的结果集进行动态报表查询,可以进行切片、钻取、旋转(行列变换)等操作。

多维数据分析通常包括以下几种分析方法

  1. 切片

在给定的数据立方体的一个维上进行的选择操作就是切片(slice),切片的结果是得到一个二维的平面数据。

  1. 切块

在给定的数据立方体的两个或多个维上进行的选择操作就是切块(dice),切块的结果是得到一个子立方体

  1. 上卷

维度是具有层次性的,如时间维可能由年、月、日构成,维度的层次实际上反映了数据的综合程度。维度的层次越高,所代表的数据综合度越高,细节越少,数据量越少;维度的层次越低,所代表的数据综合度越低,细节越充分,数据量越大。上卷(roll-up)也称为数据聚合,是在数据立方体中执行聚集操作,通过在维级别中上升或通过消除某个或某些维来观察更概括的数据。

  1. 下钻

下钻(drill-down)也称为数据钻取,实际上是上卷的逆向操作,通过下降维级别或通过引入某个或某些维来更细致地观察数据。

  1. 旋转

通过数据旋转(pivot or rotate)可以得到不同视角的数据。数据旋转操作相当于基于平面数据将坐标轴旋转。例如,旋转可能包含行和列的交换,或是把某一维旋转到其他维中去。

### 使用 MATLAB 对多维数据进行 DBSCAN 聚类分析 #### 初始化环境与加载数据 为了在MATLAB中对多维数据执行DBSCAN聚类分析,首先需要准备实验环境并导入待处理的数据集。假设已经有一个名为`dataMatrix`的多维数组作为输入数据源。 ```matlab % 加载或创建一个多维数据集 load('yourMultidimensionalData.mat'); % 如果有现成文件可直接读取 % 或者生成一些测试数据 numPoints = 1500; dimensions = 4; % 数据维度数 dataMatrix = rand(numPoints, dimensions); % 创建随机分布的四维数据点 ``` #### 参数设置 根据实际应用场景调整Eps(半径阈值)和MinPts(最小点数量)。这两个参数对于最终聚类效果至关重要,通常需要依据具体情况进行调优[^1]。 ```matlab epsValue = 0.3; % 半径范围内的最大距离 minPts = 10; % 定义核心对象所需的最少邻居数目 ``` #### 执行DBSCAN算法 利用MATLAB内置功能或其他第三方库实现DBSCAN聚类操作。这里采用自定义函数的方式展示基本流程: ```matlab function [labels, coreIndices] = dbscan(data, eps, minPts) n = size(data, 1); labels = zeros(n, 1)-1; function neighbors = regionQuery(pIdx) distances = pdist2(data(pIdx,:), data, 'euclidean'); neighbors = find(distances <= eps & (distances > 0)); end clusterId = 0; for i=1:n if ~isempty(labels(i)) continue; end neighborPts = regionQuery(i); if length(neighborPts) < minPts labels(i) = -1; % Noise point continue; else clusterId = clusterId + 1; expandCluster(clusterId, i, neighborPts); while true newNeighborPts = []; for j=1:length(neighborPts) nextPointIndex = neighborPts(j); if labels(nextPointIndex)==-1 || isempty(labels(nextPointIndex)) moreNeighbors = regionQuery(nextPointIndex); if length(moreNeighbors)>=minPts newNeighborPts = union(newNeighborPts, setdiff(moreNeighbors, neighborPts)); end if labels(nextPointIndex)==-1 labels(nextPointIndex)=clusterId;% Border points also belong to the same cluster as their density reachable cores. elseif isempty(labels(nextPointIndex)) labels(nextPointIndex)=clusterId; neighborPts(end+1)=nextPointIndex; end end end if isempty(newNeighborPts) break; else neighborPts=[setdiff(union(neighborPts,newNeighborPts),coreIndices)]; end end end end function expandCluster(cid, idx, np) labels(idx) = cid; coreIndices(end+1) = idx; neighborPts = np; end end ``` #### 结果评估与可视化 完成上述步骤后即可获得每一点所属类别标签及其对应的核心样本索引列表。可以进一步绘制散点图来直观展现各簇间关系[^2]。 ```matlab [clusters, coreSamples] = dbscan(dataMatrix, epsValue, minPts); figure(); gscatter(dataMatrix(:,1), dataMatrix(:,2), clusters, [], [], [], "on", ... {'+', '.', '*', '^', '<'}); hold on; plot(dataMatrix(coreSamples, 1), dataMatrix(coreSamples, 2), '+r', 'MarkerSize', 8); title(['DBSCAN Clusters with Eps=', num2str(epsValue), ', MinPts=', num2str(minPts)]); xlabel('Dimension 1'); ylabel('Dimension 2'); legend off; grid minor; colorbar; ``` 注意:以上代码片段仅适用于二维情况下的简单可视化;当涉及更高维度时,则可能需要用到降维方法如PCA或者t-SNE转换后再做图形化表示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值