还能这样?把 Python 自动翻译成 C++

本文介绍了如何使用Pythran工具将Python科学计算代码自动翻译成C++,以解决线上服务中Python特征工程逻辑转换为C++的痛点。Pythran通过预编译提高性能,并支持多核和SIMD指令。虽然不支持完整Python语法,但对numpy等库支持良好,简化了特征工程代码的移植。
摘要由CSDN通过智能技术生成

作者:byronhe,腾讯 WXG 开发工程师

一、问题背景

随着深度学习的广泛应用,在搜索引擎/推荐系统/机器视觉等业务系统中,越来越多的深度学习模型部署到线上服务。

机器学习模型在离线训练时,一般要将输入的数据做特征工程预处理,再输入模型在 TensorFlow PyTorch 等框架上做训练。

1.常见的特征工程逻辑

常见的特征工程逻辑有:

  1. 分箱/分桶 离散化

  2. log/exp 对数/幂等 math numpy 常见数学运算

  3. 特征缩放/归一化/截断

  4. 交叉特征生成

  5. 分词匹配程度计算

  6. 字符串分隔匹配判断 tong

  7. 缺省值填充等

  8. 数据平滑

  9. onehot 编码,hash 编码等

这些特征工程代码,当然一般使用深度学习最主要的语言 python 实现。


二、业务痛点

离线训练完成,模型上线部署后,同样要用 C++ 重新实现 这些 python 的特征工程逻辑代码。

我们发现,“用 C++ 重新实现” 这个步骤,给实际业务带来了大量的问题:

  1. 繁琐,费时费力,极容易出现 python 和 C++ 代码不一致

  2. 不一致会直接影响模型在线上的效果,导致大盘业务指标不如预期,产生各种 bad case

  3. 不一致难以发现,无法测试,无法监控,经常要靠用户投诉反馈,甚至大盘数据异常才能发现

1. 业界方案

针对这些问题,我调研了这些业界方案:

《推荐系统中模型训练及使用流程的标准化》
https://www.infoq.cn/article/2E6LCqb1GeqFRAjkkjX3

《自主研发、不断总结经验,美团搜索推荐机器学习平台》
https://cloud.tencent.com/developer/article/1357309

《京东电商推荐系统实践》
https://www.infoq.cn/article/1OkKmb_gEYNR3YqC9RcW

“模型线上线下一致性问题对于模型效果非常重要,我们使用特征日志来实时记录特征,保证特征的一致性。这样离线处理的时候会把实时的用户反馈,和特征日志做一个结合生成训练样本,然后更新到模型训练平台上,平台更新之后在推送到线上,这样整个排序形成了一个闭环。”

总结起来,有几种思路:

  1. 在线特征存储起来给离线用

  2. 在线 C++ 代码编译成 so 导出给离线用

  3. 根据一份配置生成离线和在线代码

  4. 提取公共代码,加强代码复用,等软件工程手段,减少不一致


2. 自动翻译方案

(1) .已有方案的缺点

但这些思路都有各种缺点:

  1. 所有在线请求的所有特征,这个存储量数据量很大

  2. 算法改代码需要等待后台开发,降低了算法同学的工作效率

  3. 特征处理代码的复杂度转移到配置文件中,不一定能充分表达,而且配置格式增加学习成本

  4. 就这边真实离线特征处理代码来看,大部分代码都无法抽取出公共代码做复用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值