CCF 2021-4-2 邻域均值
这个题作为第二题,暴力是不可能过得,所以来考虑一下用那种算法
对于这种算一段长度或者面积内所有数的和的问题,一般是要联想到前缀和,像这种二维数组,那必然是用二维前缀和
所以二维前缀和怎么用,我也是现场推出来的(好久没敲过了,全都忘了),所以大家要理解这个东西,而不是去背代码。
所以这里只讲思路:
正片开始(下面所有的图都是二维前缀和的图)
之前提到过,如果要暴力求解一定会超时,也就是我们计算某个部分的时候,可以用一下之前算出来的结果(也就是一维前缀和的思想,不要给我说一维的也不会)。
当我们填第一行的时候可以按照一维的形式来填
但是到了第二行,只考虑这一行就变得不合理了
于是我们需要上一行我们已经算出来的数作为基础,继续往下填写(也就是动态规划的思想)
对于上一行的信息可以直接利用,但是对于当前行的信息,就需要拿另一个变量来记录了。(因为当前行前面的数已经不单单是这一行的前缀和了,他是整个矩阵的前缀和,所以不能利用)
这样就可以愉快的填表了,填完之后就是二维前缀和了
可是填出来了,不会用啊。好问题,那就接着推。
我们需要的是一段矩形内的所有数据的和,也就是知道各个角的坐标,那么我们就可以利用我们在幼儿园学过的矩形覆盖知识,来对二维前缀和进行加加减减。
tsum = my_sum[xr][yr] - my_sum[xl - 1][yr] - my_sum[xr][yl - 1] +
my_sum[xl - 1][yl - 1];
至于为啥要-1,画画图就知道了亲。
这里又涉及到一个问题,就是说我们的下标都是从0开始的,如果要-1就会多出很多特判,这是我们不想看到的。于是我们把所有的下标全部+1,就完美的解决了这个问题了。
好了,正片结束了
代码奉上。祝各位ccf顺利,我去肝第三题了
//#include<bits/stdc++.h>
#include<iostream>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAXN = 1e3 + 1;
//#define int long long
inline int read()
{
int x = 0;
int f = 1;
char ch = getchar();
while (ch < '0' || ch>'9')
{
if (ch == '-')
{
f = -1;
}
ch = getchar();
}
while (ch >= '0' && ch <= '9')
{
x = (x << 1) + (x << 3) + (ch -= '0');
ch = getchar();
}
return x * f;
}
int n, l;
double a[MAXN][MAXN];
double my_sum[MAXN][MAXN];
double t;
double tsum, tot;
double aver;
int xl, xr, yl, yr;
int r;
int ans;
signed main()
{
n = read();
l = read();
r = read();
t = read();
for (int i = 1; i <= n; i++)
{
tsum = 0;
for (int j = 1; j <= n; j++)
{
a[i][j] = read();
tsum += a[i][j];
my_sum[i][j] += tsum + my_sum[i - 1][j];
}
}
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
xl = max(i - r, 1);
xr = min(i + r, n);
yl = max(1, j - r);
yr = min(j + r, n);
tsum = my_sum[xr][yr] - my_sum[xl - 1][yr] - my_sum[xr][yl - 1] + my_sum[xl - 1][yl - 1];
tot = (yr - yl + 1) * (xr - xl + 1);
aver = tsum / tot;
if (aver <= t)
{
ans++;
}
}
}
cout << ans;
return 0;
}