有了训练好的模型之后,可以将模型迁移到电脑或者手机上
电脑:
# -*- coding: utf-8 -*-
"""
@author: Terry n
"""
# Imports
import numpy as np
import os
import sys
import tensorflow as tf
import cv2
# if tf.__version__ < '1.4.0':
# raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')
os.chdir('D:\\object_detection_api\\models-master\\research\\object_detection')
# Env setup
# This is needed to display the images.
# %matplotlib inline
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
# Object detection imports
from utils import label_map_util
from utils import visualization_utils as vis_util
# Model preparation
# What model to download.
#MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17' # [30,21] best
# MODEL_NAME = 'ssd_inception_v2_coco_2017_11_17' #[42,24]
# MODEL_NAME = 'faster_rcnn_inception_v2_coco_2017_11_08' #[58,28]
# MODEL_NAME = 'faster_rcnn_resnet50_coco_2017_11_08' #[89,30]
# MODEL_NAME = 'faster_rcnn_resnet50_lowproposals_coco_2017_11_08' #[64, ]
# MODEL_NAME = 'rfcn_resnet101_coco_2017_11_08' #[106,32]
# MODEL_NAME = 'faster_rcnn_inception_resnet_v2_atrous_coco_2018_01_28'
# MODEL_NAME = 'ssdlite_mobilenet_v2_coco_2018_05_09'
MODEL_NAME = 'fod_detection'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
#PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
PATH_TO_LABELS = os.path.join('data', 'fod.pbtxt')
#NUM_CLASSES = 90
NUM_CLASSES = 1
# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Helper code
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
# Size, in inches, of the output images.
# IMAGE_SIZE = (12, 8)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# the video to be detected, eg, "test.mp4" here
vidcap = cv2.VideoCapture(0)
# Default resolutions of the frame are obtained.The default resolutions are system dependent.
# We convert the resolutions from float to integer.
frame_width = int(vidcap.get(3))
frame_height = int(vidcap.get(4))
while (True):
ret, image = vidcap.read()
if ret == True:
# image_np = load_image_into_numpy_array(image)
image_np = image
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
print(scores)
cv2.imshow("capture",image_np)
if cv2.waitKey(1) & 0xFF == ord('q'):
ret = False
# Break the loop
else:
break
vidcap.release()
cv2.destroyAllWindows()
注意:1,第十八行定位到你的object_detection文件夹下。
2,43行,47行定位到模型位置。50,51行相继修改。54行num_classes为1
3,注意,将此model_video的python文件定位到object_detection下,再在anaconda下运行。
海康摄像头:
model_video.py
# -*- coding: utf-8 -*-
"""
@author: Terry n
"""
# Imports
import numpy as np
import os
import sys
import tensorflow as tf
import cv2
# if tf.__version__ < '1.4.0':
# raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')
os.chdir('D:\\object_detection_api\\models-master\\research\\object_detection')
# Env setup
# This is needed to display the images.
# %matplotlib inline
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
# Object detection imports
from utils import label_map_util
from utils import visualization_utils as vis_util
# Model preparation
# What model to download.
#MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17' # [30,21] best
# MODEL_NAME = 'ssd_inception_v2_coco_2017_11_17' #[42,24]
# MODEL_NAME = 'faster_rcnn_inception_v2_coco_2017_11_08' #[58,28]
# MODEL_NAME = 'faster_rcnn_resnet50_coco_2017_11_08' #[89,30]
# MODEL_NAME = 'faster_rcnn_resnet50_lowproposals_coco_2017_11_08' #[64, ]
# MODEL_NAME = 'rfcn_resnet101_coco_2017_11_08' #[106,32]
# MODEL_NAME = 'faster_rcnn_inception_resnet_v2_atrous_coco_2018_01_28'
# MODEL_NAME = 'ssdlite_mobilenet_v2_coco_2018_05_09'
# MODEL_NAME = 'fod_detection'
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
# PATH_TO_LABELS = os.path.join('data', 'fod.pbtxt')
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90
# NUM_CLASSES = 1
# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Helper code
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
# Size, in inches, of the output images.
# IMAGE_SIZE = (12, 8)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# the video to be detected, eg, "test.mp4" here
url = 'rtsp://admin:ha515515@192.168.1.64:554/11'
# vidcap = cv2.VideoCapture(0)
# Default resolutions of the frame are obtained.The default resolutions are system dependent.
# We convert the resolutions from float to integer.
while (True):
vidcap = cv2.VideoCapture(url)
ret, image = vidcap.read()
frame_width = int(vidcap.get(3))
frame_height = int(vidcap.get(4))
if ret == True:
# image_np = load_image_into_numpy_array(image)
image_np = image
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
print(scores)
cv2.imshow("capture",image_np)
if cv2.waitKey(20) & 0xFF == ord('q'):
ret = False
# Break the loop
else:
break
vidcap.release()
cv2.destroyAllWindows()
3,在视频中实时检测
video_detection.py
# By Terry_n
# https://space.bilibili.com/275177832
# 可以放在任何文件夹下运行(前提正确配置API[环境变量])
# 输出视频没有声音,pr可解决一切
import numpy as np
import os
import sys
import tensorflow as tf
import cv2
import time
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
start = time.time()
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
cv2.setUseOptimized(True) # 加速cv
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
# 可能要改的内容
######################################################
PATH_TO_CKPT = 'D:\\object_detection_api\\models-master\\research\\object_detection\\fod_detection\\fod_frozen_inference_graph.pb' # 模型及标签地址
PATH_TO_LABELS = 'D:\\object_detection_api\\models-master\\research\\object_detection\\data\\fod.pbtxt'
video_PATH = "D:\\object_detection_api\\models-master\\research\\object_detection\\test_video\\cycling.mp4" # 要检测的视频
out_PATH = "D:\\object_detection_api\\models-master\\research\\object_detection\\output_video\\out_cycling1.mp4" # 输出地址
NUM_CLASSES = 1 # 检测对象个数
fourcc = cv2.VideoWriter_fourcc(*'DIVX') # 编码器类型(可选)
# 编码器: DIVX , XVID , MJPG , X264 , WMV1 , WMV2
######################################################
# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# 读取视频
video_cap = cv2.VideoCapture(video_PATH)
fps = int(video_cap.get(cv2.CAP_PROP_FPS)) # 帧率
width = int(video_cap.get(3)) # 视频长,宽
hight = int(video_cap.get(4))
videoWriter = cv2.VideoWriter(out_PATH, fourcc, fps, (width, hight))
config = tf.ConfigProto()
config.gpu_options.allow_growth = True # 减小显存占用
with detection_graph.as_default():
with tf.Session(graph=detection_graph, config=config) as sess:
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
num = 0
while True:
ret, frame = video_cap.read()
if ret == False: # 没检测到就跳出
break
num += 1
print(num) # 输出检测到第几帧了
# print(num/fps) # 检测到第几秒了
image_np = frame
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=4)
# 写视频
videoWriter.write(image_np)
videoWriter.release()
end = time.time()
print("Execution Time: ", end - start)