自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 ZED安装

ZED安装

2022-11-04 09:38:55 529

原创 AttributeError: ‘COCO‘ object has no attribute ‘get_cat_ids‘

AttributeError: 'COCO' object has no attribute 'get_cat_ids'

2022-08-11 09:23:29 440

原创 自行制作数据集并使用yolov5训练过程

自行制作数据集并使用yolov5训练过程

2022-06-23 20:55:24 714

原创 python、ros和socket通讯

项目需要把笔记本的数据发送到小车的ros上,我们采用socket通讯的方法。首先把通过socket把笔记本的数据发送到小车上,然后通过消息发布和订阅的方式把数据传递到小车的ros上。一、通过socket发送笔记本上的数据# -*- coding: utf-8 -*-import socket client = socket.socket() #client.connect(('localhost', 1666)) # 设置连接的服务器的IP和端口 while True:

2022-05-30 14:51:09 2143 1

原创 opencv打开TX2板载摄像头的正确方式

1. 因TX2的板载摄像头和USB摄像头的打开方式不一样,并不能命令使用如下开启板载摄像头。cap = cv2.VideoCapture(0)2. 故使用带有TX2参数的代码,即可成功开启摄像头import cv2def arg2(width,height): gst_str = ('nvarguscamerasrc ! ' 'video/x-raw(memory:NVMM), ' 'width=(int)640,

2022-04-28 15:24:11 2926 1

原创 超详细Jetson Xavier NX烧录系统镜像

一、硬件准备1. SD卡(至少32G)和读卡器,前者用于转载系统镜像,后者用于镜像烧录。2. Jetson Xavier NX开发套件二、软件准备1. SDFormatter:用于格式化SD卡,下载地址为:SD Card Formatter - Download SD Memory Card formatter 2022https://www.sdcardformatter.com/2. balenaEtcher : 用于烧录系统镜像,下载地址为:balenaEtcher - Fl.

2022-03-30 10:12:05 2716 1

原创 论文阅读 Beyond Image to Depth: Improving Depth Prediction using Echoes(CVPR2021)

1 简介在计算机视觉中,多模态学习也引起了人们的兴趣。作为一个流行的流,研究人员利用音频和视觉输入来解决具有挑战性的问题。这些问题可以大致分为三类:(i)只使用音频模态作为输入,学习一个看似视觉化的任务,例如使用回声进行深度预测,(ii)使用视觉模态作为音频任务的辅助信息,(iii)同时使用这两种视听模式,例如进行深度预测。深度估计方法从仅基于单眼图像的方法到多模态的方法。通常,这些模式是稀疏深度图、激光雷达点云、鸟眼视图和法线图。单眼深度估计方法包括利用单个RGB...

2021-09-13 16:30:45 287

原创 深度数据集

1.Robust Consistent Video Depth Estimation这篇文章提到的Sintel Depth深度数据集,提供RGB和深度图像、相机的内参和外参、读写深度图的SDK。

2021-09-11 09:42:11 2756

原创 Deep Depth Completion of a Single RGB-D Image(相机深度估计)

1 简介 商品级深度相机通常无法感知有光泽、明亮、透明和遥远的表面的深度。为了解决这个问题,我们训练了一个以RGB图像为输入的深度网络,并预测了致密的表面法线和遮挡边界。然后将这些预测与RGB-D相机提供的原始深度观测相结合,以解决所有像素的深度,包括原始观测中缺失的深度。 对于损失的像素点,传统的方法是手工调整和马尔可夫图像填孔。利用深度学习的方法从rgb图像提取深度网络面临许多困难:一、训练数据的缺少,目前存在的rgbd数据是使用商业深度相机拍摄的...

2021-09-09 20:11:35 762

原创 Depth Ranging Performance Evaluation and Improvement for RGB-D Cameras(提升深度测距的性能)

1 简介使用rgbd相机进行室内的深度测距技术已经很成熟了,但是,室外技术由于由于不稳定照明、光面反射、漫反射等所产生的噪声和扰动而有待发展。由此我们提出了一种基于亮度和距离的支持向量回归策略来补偿测距误差。 本文的主要贡献是提供了一个在现场场景下减少照明和距离对RGB-D相机的影响的解决方案。首先是确定不同光照强度下不同作物果实的最佳检测距离和深度测量的精度。其次量化了照明和距离的影响。最后计算深度的填充率。2 研究方法本文提出一种新的测距...

2021-09-09 15:28:42 178 2

原创 Roadside-assisted Cooperative Planning usingFuture Path Sharing for Autonomous Driving(利用共享路边辅助合作规划)

1 摘要 车路协同系统不仅需要路测和车辆共享信息,还需要自动驾驶汽车还需要协调其行动计划,以实现更高的安全性和效率。本研究定义了车辆的未来行动计划/路径,并基于多辆车辆的未来路径信息,利用未来路径共享设计了交叉口的合作路径规划模型。 说白了就是当系统根据共享的未来路径检测到车辆路径的潜在冲突或加速机会时,它将生成一个协调的路径更新,以调整车辆的速度。2 简介本文的contribution:设计一个路边单元(RSU),提高车辆的预测,并与其他车辆...

2021-08-12 15:26:35 243

原创 Depth from Camera Motion and Object Detection

1 摘要本文旨在解决在考虑相机运动情况下的物体深度估计问题。使用DBox网络和ODMD数据集来估计深度信息。2 简介目前的自动驾驶车辆和机器人需要感知周围环境的三维信息,这需要依赖RGBD摄像头和雷达传感器。本文主要使用未标定相机运动和物体检测的边框来估计深度。优势之一是物体检测边框只有四个参数,相比于图像分割可以节约算力;优势之二是运动信息可以在大多数硬件平台上测量。 创新点: 一、推导出未校准运动和基于检测的深度估计的分...

2021-07-29 14:20:29 991 3

原创 TX2+调用板载摄像头实时目标检测(yolov5)+tensorrt

前言首先感谢無證騎士博主的大力支持,本文的也是根据他的文章魔改。因项目需求,在TX2上部署yolov5算法实时检测目标。之前在ubantu上做过yolov5的图片检测,实时检测与之类似,但也是耗费一周的时间,原谅我是个小白。一、环境安装附上無證騎士博主的博客地址:https://blog.csdn.net/hahasl555/article/details/116500763二、opencv的安装本人使用的opencv并不是按照上述博客安装的,而是使用的是opencv=4.2.0

2021-07-21 19:12:15 6289 11

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除