一文讲清楚什么是内容科技(contech) ?内涵、特征、现状及展望

01.内容科技的内涵、特征与应用现状

内容科技(ConTech)是指以人工智能、大数据等信息技术为内核,对内容产品的生产与消费链条、内容产业的组织与分工模式产生重大影响,包括区块链、物联网等在内的一系列数据与信息采集、存储、加工、传输的新技术,这些技术催生了内容产业领域的新应用、新服务。当前的内容科技主要包括数字技术与数据技术两大类。其中数字技术的应用是在信息数字化(数码化、数位化)基础上,进行内容生产加工的技术;而数据技术的应用强调了对信息分解与综合运用的过程,即找到一个信息所包含的各种元素,从而发现不同信息之间更深层的联系和区别。因此,内容科技经历了从信息处理技术到数字技术再到数据技术的发展。

如今,人们对客观事物矛盾运动所发散出的各种讯息和信号的采集,由于传感器的大规模使用,已经发展到了“数据”层面。而大数据技术使人们能够打破信息的外壳,发现信息背后事物更本质的联系,从而使信息的生产、分发、接收和反馈能够借助智能化工具,进入到一个新的阶段。由此我们看到,信息化时代的内容科技使得“内容即数据”,信息传播得以智能化。

(一)当前的内容科技,是以人工智能技术为核心的新的技术体系,表现出以人工智能驱动内容生产、消费全链条,以数字化生产、网络化传播为主要应用场景,以主流价值和意识形态引导与社会共识达成为重要指向的特征,具体表现在以下四方面:

第一,数字形态。内容科技将复杂的信息转变为可以度量的数字、数据,再将这些数字和数据建立适当的数字化模型,并把它们转化为一系列二进制代码,引入到计算机系统中进行处理,这就是信息的数字化过程,是为了使解构化的信息能够被计算机所识别和加工。同时,数字形态更便于信息的传送、存储和复制,可实现多种渠道的线性或非线性传播。数字化促生了信息传播网络和终端的融合,导致内容产品格式及其生产过程和组织的融合。

第二,数据处理。内容科技将数据处理贯穿于信息生产和传播的全流程中。智能化采集的数据来自机器的智能采集和来自人体感官所获得的信息进行解构、并经机器识别和处理后形成的数据。智能化生产是对采集到的数据进行处理、分析和加工,并根据功能设定指定相关应用所遵循的规则和标准,研发相应算法和程序,对机器学习中的模型进行训练。智能分发是对内容数据与用户数据标签化处理后的相互匹配。智能接收是通过智能终端设备实现用户行为数据的收集。智能反馈是通过智能终端入口自动化获取反馈数据。

第三,网络传播。当前内容科技的主要传播载体为互联网平台和移动互联网终端。信息传播特征表现为信息资源的极度丰富,信息传播的强时效性,信息表现形式的多元化,信息传播模式的强交互性。内容科技将进一步推动互联网向平台化、智能化和移动化转型。平台化表现为数据总汇在同一平台上分享、交流信息和资源,多种垂直应用联结成为生态级平台;移动化表现为完善基于移动传播体系的精准传播;智能化表现为大数据与算法结合的人工智能的进一步发展。

第四,对社会成员价值观形成的外部性影响显著。新兴内容科技所形成的虚拟网络环境,与现实社会共同构成了现代人类生活的主要空间。伴随公众使用智能终端设备时长的增加,内容科技对个体价值观的影响日益凸显。信息分发方式的转变主要表现在信息所表征的事务与个人利益相关联的深度和广度上,一定意义上体现为信息对个人社会化程度的影响,即特定个体与所处的社会环境建立一致性的影响。作为社会关系总和的个人,其利益的实现,在很大程度上取决于该个体是否适应其所处的社会环境,尤其在涉及社会交往和公共事务方面。依托内容科技,能够促进个人的社会交往关系建立,同时,基于用户需求分析的主流价值观引导,能够实现个体利益与公共利益的平衡和统一,有利于社会共识的形成和社会决策的制定。

(二)当前,内容科技以大数据为基础,依托各种智能算法模型,在智能识别、计算机视觉、自然语言处理、数据可视化处理、算法推荐等方面已形成相应的技术应用能力,围绕着信息采集、生产、分发、接收、反馈五个环节的智能化展开其应用,推动着内容产业全链条的变革和重塑。

1、内容采集智能化:从采集内容到采集数据。区别于普通的内容采集,智能采集以数据为采集对象,即通过数据的采集和分析,拓宽内容素材的来源途径和内容采集的维度。在传统的内容生产中,素材的挖掘和信息的获取多有赖于内容生产者身体可到达的边界,而数据的采集则大大突破感官采集的限制,为智能化内容生产创造条件。

数据是人类表征外部世界的初始化的符号,是记载客观事物的性质、状态以及相互关系等的物理符号或这些物理符号的组合,是内容的数位化表现形式和载体。内容采集智能化的核心即在于数据化(datafication),具体包括机器采集数据的“结构化”和感官采集内容的“解构化”。例如,摄像头、传感器等设备可以在更广范围、更大程度上扩充来源与环境信息;图像和视频识别技术可以基于深度学习进行大规模数据训练,实现对图片、视频中物体的类别、位置等信息的识别,实现场景信息实时采集;而语音识别和转化技术则可将现场的语音报道生成文字版或将音视频内容转化成为文本素材,提升了内容素材生成和管理的效率。内容“解构化”的关键技术是自然语言理解技术(Natural Language Understanding,NLU),旨在通过句法分析、语义解释和上下文推理,使计算机能够理解人类自然语言的文本意义和深层意图,完成从文本到意义和意图的映射,进一步实现内容的“标签化”。

2、内容生产智能化:从人工生产到机器生产。在智能采集数据并对数据进行分析的基础上,内容科技助力内容生产智能化,即根据人类生产生活的各种场景需要而展开内容生产,具体包括自动生产、智能聚合、制作增强、内容审核等多个层面。自动化生产指利用智能算法工具自动生产内容的新型生产模式,基本特点是从数据源自动获取数据、使用算法进行内容整合,并完成拟人化的内容生产。其中实现自动生成的程序也被称为“写稿机器人”(包括文字和视频创作)。制作增强,指依托内容科技的海量内容搜集能力和智能分析能力,可为碎片内容的整合提供新的可能,协助内容生产者快速建立碎片化信息间的联系,进一步强化内容生产力。智能化的内容核查系统可以自动帮助用户检测和过滤潜在的虚假信息,并为内容生产者核查事实提供辅助,成为一种新型“把关者”,以人机力量的协同来更多地对抗虚假信息、不良内容的风险。

3、内容分发智能化:从千人一面到千人千面。内容科技助力内容分发智能化,即通过内容与应用场景的智能匹配,提升内容分发效率,充分实现内容价值。当前,海量内容供给与大规模且个性化内容需求的精准匹配,是移动传播时代的内容服务商必须完成的命题,而基于算法推荐技术的精准分发为这一命题提供了高效率、低成本的解决方案。当前的智能分发主要表现为智能化的内容分发和智能化的社交分发两类模式。

智能化的内容分发,指基于内容标签来响应用户不同场景下的内容需求,以提高分发的适配度和传播效率。智能化的社交分发,以公众广泛参与为背景,通过算法促进社交关系的建立,依托智能化的社交关系提高信息分发效率。当前的主流推荐算法中,算法与社交结合已成大势所驱,主要应用包括亲密关系加权算法、重要关系加权算法、互动加权算法等。在“全员媒体”时代,大规模的用户参与、集聚必将形成用户关系网络,但用户之间的关系并非具有同等的价值,因而,通过对关系的建立和筛选实现内容筛选成为智能化社交分发的重要思路。

4、内容接收智能化:从传统渠道到智能入口。智能接收主要通过终端设备信息接收系统的智能化来实现。终端是指使最终的内容产品得以呈现的物理设备。当前传播体系中的主流终端主要包含个人移动终端(如智能手机)和家庭终端(如家庭大屏),而伴随着5G技术的逐步普及,信息接收终端的智能升级也迎来多重机遇。首先,5G的广接入带来万物互联,可穿戴设备、智能家居、智能汽车等均有可能形成新的人机界面和交互方式;其次,5G的低时延使得端云协同变得触手可及,意味着边缘设备(即终端)也能够实现更多的计算能力,终端信息接收系统的信息分析、过滤与呈现等将得到进一步升级。

5、内容反馈智能化:从延时模糊到即时精确。内容科技也将助力内容反馈的智能化,使内容生产者和运营者及时了解其生产内容的传播效果及传播路径,从而对生产、分发等各个环节进行调整,提升内容生产和运营效率,并为其维护版权利益提供依据。当前,人脸识别、声纹识别、图像识别、数据挖掘等技术均被用于用户互动环节之中,移动终端用户的每一次内容消费行为都可以被实时记录下来,成为对其生产内容的反馈。内容生产机构或内容聚合平台可通过数据技术,对大量的用户反馈数据进行智能化分析,进一步指导后续的内容生产、分发等各环节。同时,用户的消费数据可能也伴随着新的数据内容(如转发、评论、点赞等)产生,这些内容也将回到采集环节,成为另一个循环的开始。

02.内容科技的目标与任务

(一)更高效、精准地创造分发更丰富、优质的内容以服务用户。

内容科技将加速内容业态重构,催生新的社会化大分工。内容科技致力于将新技术应用到新闻产品的采集、生产、分发、反馈等环节,赋能媒体产业、社会创作力量、聚合分发平台以及各类内容触达终端,让内容安全可靠、有趣有用,让普通大众能够获得便捷的生产、传播工具,尽可能满足海量用户的个性化需求。

1、内容采集高效便捷。传统媒体时代,数据的记录大多存储在本地,不作为公开数据资源,例如音乐、照片、视频、监控录像等影音资料,数量虽然巨大,但无法将其进行更深入的数据分析,社会对数据分析需求也不够强烈。伴随着人工智能技术的发展,数字资产管理(DAM)系统逐渐成为当下必不可少的系统,帮助企业在数字化时代更安全又高效地管理自己的数字资产。

2、内容生产有用有趣。随着人工智能、大数据、云计算、5G等技术的应用,内容生产环节发生了前所未有的改变,机器人写作等正在成为趋势,“人机协作”将是未来新闻生产的主要方式。媒体行业对AI的期待是提高效率,将记者从基础工作中解放出来,让他们完成更复杂的选题,讲述只有人能讲述的故事。全媒体时代,我们不仅能够运用音视频、动画动漫等各类表达方式,还产生了VR新闻、移动短视频、H5交互式新闻、无人机新闻等全媒体的表达手段。新闻生产从“可知”迈入了更具丰富性的“可感”。

3、精准分发优质内容。互联网时代,面对海量数据,如何选择自己需要的内容是每个用户面临的问题。搜索引擎虽然被人们广泛使用,但并不能解决信息过载这一信息时代的核心问题,原因在于某些陌生领域,用户很难用恰当的关键词描述自己的需求。而随着人工智能等技术的发展、催生了内容精准分发,即根据用户的历史数据主动推荐给用户满足他们兴趣和需求的信息。在这个以“人”为中心的社会化时代,精准分发得到广泛发展。

(二)以场景化的内容产品、便捷化的内容工具、智能化的内容平台赋能产业。

借助科技的力量,以内容为介质,同其他产业进行横向关联、广泛融合,催生出全新的内容产业,其价值将会无限放大,从有限走向无限。内容科技的目标就是用科技“横向”打通内容产业与其它产业,成为一项生产要素,成为其它产业的赋能者。

1、内容赋能制造业,助推中国制造迈向“中国智造”。

随着5G、AI、IoT技术逐步普及和场景化应用,内容与人、机、物的全效能、全场景链接,赋能中国制造迈向“中国智造”将成为趋势。中国制造的各类产品在出厂时可以搭载全球各国的精品内容,在不同国家的售卖渠道上进行本地化传播,伴随中国制造的全球化销售实现全球内容的精准分发和触达;而音箱、手机等智能硬件也可以在传播内容的同时收集用户数据,反哺内容产业,构建内容生态圈。

2、内容赋能服务业,促进服务业态创新。

国家发展改革委发布的《服务业创新发展大纲(2017—2025年)》提出,鼓励利用新一代信息技术改造提升服务业,创新要素配置方式,推动服务产品数字化、个性化、多样化,推动服务网络化、智慧化、平台化。服务业的数字化转型离不开信息、离不开内容,内容赋能服务转型是大势所趋。

3、打造智能化内容平台,为各行业提供知识图谱服务。

内容科技的目标是建设一个全媒体智能平台,依靠人工智能等技术,使信息内容、技术应用、平台终端和管理手段共融互通,满足全程媒体、全息媒体、全员媒体、全效媒体的需要。特赞致力于通过生成式人工智能技术助力企业实现更高效、更优质的内容管理、积累、生产、分析,内容生态已聚集 10万+内容创作者,生产 15万+内容资产,每年专有AIGC模型调用100万+次,积累10亿+企业AIGC的数据集规模。

03.内容科技展望

(一)数据采集:AIGC时代的认知方式革命

人工智能技术引发的传感器的普遍部署和应用,将带来人类对外部世界认识方式的一场革命,这将是内容科技发展的显著趋势之一。在5G技术支持下,传感器能够将信源从人体拓展到世界万物:无人机以“上帝视角”获取多维数据,物联网实现万物互联和广泛接入,技术应用延展了信息获取的深度和广度。5G技术和传感器、存储器的结合,极大拓展数据采集方式、采集维度和采集能力,使数据采集范围更广、速度更快,各类客体的存在状态均以数据化形态进入网络,成为可被运算的对象,这将大大有助于人类更准确地分析事物的内在联系,判断外部环境变化。

(二)知识图谱:发现内容的内在联系

当前,以人工智能、大数据为支撑的智能技术,已经在语音识别、图像处理、机器翻译等领域实现了较大突破,但这些本质上仍是为实现特定功能的专用智能工具,其更大范围的实际应用,还要在强大的算力、算法的基础上,依托已经被精细标注过的大数据来实现。知识图谱就是系统化、精细化标注数据的工具。

实现跨领域知识图谱的突破,可进一步帮助机器跨越模态理解数据,学习到最接近人脑认知的“一般表达”,从而获得类似于人脑的多模感知能力。因此知识图谱技术将成为智能技术发展的核心趋势之一。这一关键性技术在内容领域的应用,有望带来内容数据库能力的革命性提升,从而创造崭新的内容价值。

(三)智能审核:平台时代的“把关人”

互联网技术赋能,导致汇聚了海量用户的互联网平台的产生。微博、网络直播、短视频等自媒体形态的出现,一方面使普通用户获取了更多元、更便捷的表达工具,使得传播主体呈现出爆发式扩张和全民化态势;另一方面,随之而来出现了表达权滥用的问题,造成内容生产的门槛大大降低,导致互联网平台上内容质量参差不齐、鱼龙混杂。因此,对于互联网平台上的内容尤其是视频内容的审核,成为互联网治理的关键问题之一,也成为内容科技必须突破的关键领域之一。

(四)科技支撑:以内容科技赋能社会治理

互联网的发展不仅重构内容生态,重构用户连接,而且也正在重构整个社会结构和社会运行方式。在此背景下,现代社会治理的方式和方法也在发生深刻变革。以科技支撑赋能社会治理体系与治理能力现代化,扩展了内容科技更加广阔的应用领域。通过内容科技的应用,将能进一步提升多方共同参与模式下社会信息交互的效率和质量,促进社会共识的达成。

在基础数据层面,人工智能、传感器等新兴技术,可对社会治理数据进行全程、全息的采集、挖掘、分析与应用,以使社会治理共同体能够及时发现异常,捕捉新的变化,大大拓展消息来源和内容资讯,促使内容生产机构嵌入社会治理体系。

(五)科技向善:引领内容科技的未来

伴随着内容科技的突飞猛进,智能技术带来的负面影响也愈发不容忽视。一方面,内容制作与编辑技术的门槛降低,使得过度编辑、蓄意造假、AI换脸等负面事例层出不穷,分布在内容采集、生产、分发、接收和反馈的全过程中,令公众不得不对内容科技智能化应用背后的伦理风险,始终保持警惕。另一方面,智能化技术在应用过程中,采集和使用用户数据的边界仍然模糊,使得用户的隐私权、知情权难以保障。

当前,在智能化内容生产中,数据已经成为了一种基础资源,平台也成为一种权力架构。对掌握核心数据及处理能力的互联网平台企业而言,在数据与技术应用中的自我克制与制度约束,对于保障这种基础设施和权力的合理使用至关重要。政府、互联网平台、行业协会、用户等多元主体均应在内容科技发展中发挥作用,以相关的法律法规维护市场环境,以主体自觉约束自身行为,以制度规范增强行业自律,有效应对潜在的法律问题与伦理风险,形成权责利清晰的协同治理格局,共同推动内容科技向促进人类共同福祉的方向发展。

来源:人民网

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值