论文浅尝 | 异构图 Transformer

本文探讨了一种处理异构图的新方法,通过将边的模型参数分解为三个矩阵相乘,形成元关系。这种方法避免了手工定义元路径,考虑了异构图的动态特性,适用于大规模异构图建模。模型框架包括Heterogeneous Mutual Attention、Heterogeneous Message Passing和Target-Specific Aggregation三个部分,通过引入相对时间编码(RTE)处理动态图,并设计了HGSampling算法处理大规模数据。实验表明,该方法在处理异构图数据时表现出优越性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

笔记整理:许泽众,浙江大学博士在读

论文链接:https://arxiv.org/abs/2003.01332

本文主要提出一种处理异构图的方法,所谓异构图(Heterogeneous graph)是指在一个图中会出现不同类型的边和节点的图。早期对于图的处理图的方法一般集中于同构图的处理。近年来开始关注对异构图的处理,但是一般都具有以下缺点:

1.大多涉及到为每种类型的异构图设计元路径(meta-path),但是这种元路径需要手工定义,这不仅需要领域知识,同时降低了效率;2.或者假设不同类型的节点/边共享相同的特征和表示空间,这显然是不合适的;或者单独为不同节点类型或边类型保留各自单独的非共享权重,这忽略了异构图之间的交互性;3.大多忽略了每一个(异构)图的动态特性(个人觉得这一点和之前的两点不是在解决同一个问题,应该知只是为了丰富文章内容);4.无法对Web规模的异构图进行建模。

为了处理异构图,文章的核心思想是将每条边的模型参数分解为三个矩阵相乘。其分解根据每条边的三元组 <初始节点类型,边类型,目标节点类型>来定义。这就是文中所提的元关系(meta-relation)。整体的计算参照transformer。以下图为例:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值