笔记整理:陈一林,东南大学硕士,研究方向为不确定性知识图谱规则与推理。
论文引用:Citation: Chen, Z.M., Yeh, M.Y. and Kuo, T.W., 2021, May. PASSLEAF: A Pool-bAsed Semi-Supervised LEArning Framework for Uncertain Knowledge Graph Embedding. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 5, pp. 4019-4026).
动机
不确定性知识图谱(uncertain knowledge graph, UKG)含有知识的置信度信息,然而现有的大部分知识图谱嵌入(embedding)方式都忽视了这种置信度信息。UKGE是第一个针对UKG设计的嵌入方法,它的主要思想是将三元组的得分映射为置信度,并将其与真实置信度比较作损失。但是UKGE遵循封闭世界假设,将未出现的三元组均视为负样本;基于DisMult的嵌入方式,让其无法扩展到别的嵌入方式,使用概率软逻辑来构造新的训练样本的方式需要领域知识和较大的人工成本。PASSLEAF针对UKGE存在的这些问题设计了优化方式,以改善表现。PASSLEAF由两部分组成,置信度预测模型和包含自动生成含有置信度