论文浅尝 | PASSLEAF:基于样本池的不确定性知识图谱嵌入半监督学习框架

论文介绍了PASSLEAF,一个处理不确定性知识图谱(UKG)的半监督学习框架,它改进了现有UKG嵌入方法,通过预测置信度和生成带有置信度的负样本,提高了模型性能。PASSLEAF包含一个样本池,用于收集不同时间步的学习知识,避免假负样本的影响,提升学习效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

8eab786d0808e785a310be453a24407c.png

笔记整理:陈一林,东南大学硕士,研究方向为不确定性知识图谱规则与推理。

论文引用:Citation: Chen, Z.M., Yeh, M.Y. and Kuo, T.W., 2021, May. PASSLEAF: A Pool-bAsed Semi-Supervised LEArning Framework for Uncertain Knowledge Graph Embedding. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 5, pp. 4019-4026).

动机

不确定性知识图谱(uncertain knowledge graph, UKG)含有知识的置信度信息,然而现有的大部分知识图谱嵌入(embedding)方式都忽视了这种置信度信息。UKGE是第一个针对UKG设计的嵌入方法,它的主要思想是将三元组的得分映射为置信度,并将其与真实置信度比较作损失。但是UKGE遵循封闭世界假设,将未出现的三元组均视为负样本;基于DisMult的嵌入方式,让其无法扩展到别的嵌入方式,使用概率软逻辑来构造新的训练样本的方式需要领域知识和较大的人工成本。PASSLEAF针对UKGE存在的这些问题设计了优化方式,以改善表现。PASSLEAF由两部分组成,置信度预测模型和包含自动生成含有置信度

知识图谱transformer是一种基于图谱结构的编码器模型,用于学习和表示知识图谱中的关系。它采用了类似于普通transformer模型的框架,但在结构上有一些差异。通过引用可以看到,知识图谱transformer的框架图与普通transformer模型相似。然而,为了更好地利用图谱中的关系结构,解决了线性/层次约束的问题,作者提出了一种新的Graph Transformer编码器,如引用所述。这种编码器允许模型有效地利用图谱的结构信息,从而更好地学习和表示知识图谱中的关系。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [论文浅尝 | 利用图 Transformer 实现基于知识图谱的文本生成](https://blog.csdn.net/TgqDT3gGaMdkHasLZv/article/details/100190240)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [基于生成式预训练Transformer的跨媒体内容生成及知识图谱构建](https://blog.csdn.net/universsky2015/article/details/131468154)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值