论文浅尝 | Temporal Knowledge Graph Completion Using Box Embeddings

BoxTE是为时态知识图谱补全设计的模型,扩展了BoxE,能捕获丰富的推理模式和跨时间推理。在多个基准上,BoxTE展示了优越的性能和归纳能力,尤其在需要强大时间感应能力的数据集上。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

eb8a10731ca98ac9589837727c5234f4.png

笔记整理:杨露露,天津大学硕士

论文链接:https://www.aaai.org/AAAI22Papers/AAAI-6210.MessnerJ.pdf

动机

时态知识图谱补全(TKGC)中的主要挑战是额外学习时间戳嵌入,以便嵌入模型根据关系、实体和时间戳嵌入联合执行评分。本文提出了BoxTE,一个用于TKGC的盒子嵌入模型,建立在静态知识图谱嵌入模型BoxE之上。

亮点

本文的亮点主要包括:

(1)表明 BoxTE 具有充分的表达能力,并且具有很强的归纳能力,可以捕获丰富的推理模式和跨时间推理模式。

(2)首次在 TKGC 的背景下对归纳能力进行了全面分析。

(3)进行了详细的实验评估,并表明即使在参数有限的情况下, BoxTE 在几个 TKGC 基线上实现了最先进的性能。

模型表示

BoxTE建立在静态BoxE模型的基础上,并用时间表示法对其进行了扩展,这允许额外捕获跨时间的推理模式(具体证明请看原文),并对某些时间关系信息进行建模。

除了实体和关系表示,BoxTE定义&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值