笔记整理:沈小力,东南大学硕士,研究方向为知识图谱
链接:https://dl.acm.org/doi/pdf/10.1145/3511808.3557275
动机
情感分析是自然语言处理的基础任务,它包含介绍了细粒度情感分析中的一个常见任务——基于方面的情感分析(ABSA,Aspect-Based Sentiment Analysis)。在ABSA任务中,输入模型的是一个标记序列,每个标记代表一个词或短语,任务是在这些标记中准确地识别出表示方面和情感的词或短语。标记有五种类型:表示方面的开始和内部标记(B-A和I-A)、表示情感的开始和内部标记(B-O和I-O)以及不属于方面或情感的标记(N)。当前已有的ABSA研究主要关注单领域情况下的方面提取,即训练和测试数据来自同一分布。然而,当训练(源)领域与测试(目标)领域不同时,传统方法的性能通常较差,因为不同领域之间使用的方面差异很大,重叠部分较少。针对这些挑战,该论文提出了一种新方法,使用领域特定的知识图谱增强预训练的Transformer模型,以提高跨领域方面抽取的性能。为了构建领域特定的知识图谱,该方法使用了一个大规模的通识知识图谱(