笔记整理:张锦添,浙江大学硕士,研究方向为自然语言处理
论文链接:https://arxiv.org/abs/2305.05390
发表会议:ACL 2024
1. 动机
尽管人工智能在语言理解和生成方面取得了显著进展,但要让机器具备与人类相似的社交互动能力,仍然是一个巨大的挑战。尤其是在理解语言背后复杂的人类心理状态和社交动机方面,现有的AI系统仍然显得力不从心。这种局限性主要源于两个方面:
首先,大多数现有的AI系统和自然语言处理技术主要依赖于对文本数据的统计分析和模式识别。这些方法虽然在处理表面的语言结构和简单语义方面表现出色,但它们通常缺乏对语言背后深层次含义的理解能力。换句话说,这些系统往往无法捕捉到人类交流中隐含的意图、情感和信念等心理状态。
其次,人类社交互动的复杂性远远超出了简单的信息交换。在真实的社交场景中,人们不仅需要理解对方的言语,还需要根据对方的言行、环境背景以及社会常识等因素,推断出对方的心理状态和可能的反应。这种能力,即所谓的心理理论(ToM),是人类社交智能的核心组成部分,但对于现有的AI系统来说,却是一个难以逾越的障碍。
2. 贡献
本文的主要贡献有:
(1) 提出了第一个用于机器心理理论的认知知识图谱。作者将人类心理理论实例化为超过45,000个手动验证的认知链集合,这为访问和学习提供了基本的心理理论能力。
(2) 通过将COKE与LLaMA-2(Touvron等人,2023年)结合,构建了一个强大的认知语言模型COLM,以便预测知识图谱外情境下的认知链。
(3) 进行了广泛的实验来评估COLM和典型大型语言模型的心理理论能力。结果显示,COLM在零样本和少样本设置中都优于强大的基线模型,如GPT-4(Achiam等人,2023年),这在所有认知生成任务中都通过自动和人类评估得到了证明,这反过来又证明了COKE的高质量。
(4) 进一步证实了COKE在增强社交应用中的潜力,并证明了其在下游情感支持对话任务中的有效性。
3. COKE数据集构建
图1 COKE数据集构建流程
3.