Leetcode 42. 接雨水
题目描述:
给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
示例 1:
输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。
示例 2:
输入:height = [4,2,0,3,2,5]
输出:9
解题思路:
官方解法:对于数组height 中的每个元素,我们找出下雨后水能达到的最高位置,等于两边最大高度的较小值减去当前高度的值。
代码实现思路(动态规划解法):
(1)找出每个元素的两边的最大高度,分别存入两个数组 left_max 和 right_max
(2)开始遍历数组height 中的每个元素,从两个数组 left_max 和 right_max取出两边的最大高度,min函数取得两边最大高度的较小值,然后减去当前元素,得到当前元素能接到的水的体积。
(3)每个元素接到的体积相加得到总体积
时间复杂度:O(n)
空间复杂度:O(n)
使用了额外的内存空间来存放两个数组 left_max 和 right_max。
C++实现:
class Solution {
public:
int trap(vector<int>& height) {
int len = height.size();
int volume = 0;
if(len == 0) return 0;
int* left_max = new int[len];
int* right_max = new int[len];
left_max[0] = height[0];
right_max[len-1] = height[len-1];
for(int i=1;i < len;i++){
left_max[i] = max(left_max[i-1], height[i]);
}
for(int i=len-2;i >= 0;i--){
right_max[i] = max(right_max[i+1], height[i]);
}
for(int i=0;i < len;i++){
int v = max(min(left_max[i], right_max[i]) - height[i], 0);
volume += v;
}
return volume;
}
};
java实现:
class Solution {
public int trap(int[] height) {
int len = height.length;
int volume = 0;
if(len == 0) return 0;
int[] left_max = new int[len];
int[] right_max = new int[len];
left_max[0] = height[0];
right_max[len-1] = height[len-1];
for(int i=1;i < len;i++){
left_max[i] = Math.max(left_max[i-1], height[i]);
}
for(int i=len-2;i >= 0;i--){
right_max[i] = Math.max(right_max[i+1], height[i]);
}
for(int i=0;i < len;i++){
int v = Math.max(Math.min(left_max[i], right_max[i]) - height[i], 0);
volume += v;
}
return volume;
}
}
python实现:
class Solution(object):
def trap(self, height):
"""
:type height: List[int]
:rtype: int
"""
size = len(height)
if size == 0: return 0;
volume = 0
left_max, right_max = [0]*size, [0]*size
left_max[0] = height[0]
right_max[size-1] = height[size-1]
i, j = 1, size-2
while i < size:
left_max[i] = max(left_max[i - 1], height[i])
i += 1
while j >= 0:
right_max[j] = max(right_max[j + 1], height[j])
j -= 1
for i in range(size):
v = max(min(left_max[i], right_max[i]) - height[i], 0)
volume += v
return volume