KL散度、JS散度、Wasserstein距离

目录

                  1. KL散度

2. JS散度(Jensen-Shannon)

3. Wasserstein距离


1. KL散度

KL散度又称为相对熵,信息散度,信息增益。KL散度是是两个概率分布 P 和 Q  之间差别的非对称性的度量。 KL散度是用来 度量使用基于 Q 的编码来编码来自 PP 的样本平均所需的额外的位元数。 典型情况下,P 表示数据的真实分布,Q 表示数据的理论分布,模型分布,或 P 的近似分布。 

定义如下:

因为对数函数是凸函数,所以KL散度的值为非负数。

有时会将KL散度称为KL距离,但它并不满足距离的性质:

  1. KL散度不是对称的,即 
  2. KL散度不满足三角不等式。

2. JS散度(Jensen-Shannon)

JS散度度量了两个概率分布的相似度,基于KL散度的变体,解决了KL散度非对称的问题。一般地,JS散度是对称的,其取值是 0 到 1 之间。定义如下:

KL散度和JS散度度量的时候有一个问题:

如果两个分布 P,Q 离得很远,完全没有重叠的时候,那么KL散度值是没有意义的,而JS散度值是一个常数。这在学习算法中是比较致命的,这就意味这这一点的梯度为 0。梯度消失了。

3. Wasserstein距离

Wasserstein距离度量两个概率分布之间的距离,定义如下:

  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值