目录
1. KL散度
KL散度又称为相对熵,信息散度,信息增益。KL散度是是两个概率分布 P 和 Q 之间差别的非对称性的度量。 KL散度是用来 度量使用基于 Q 的编码来编码来自 PP 的样本平均所需的额外的位元数。 典型情况下,P 表示数据的真实分布,Q 表示数据的理论分布,模型分布,或 P 的近似分布。
定义如下:
因为对数函数是凸函数,所以KL散度的值为非负数。
有时会将KL散度称为KL距离,但它并不满足距离的性质:
- KL散度不是对称的,即
- KL散度不满足三角不等式。
2. JS散度(Jensen-Shannon)
JS散度度量了两个概率分布的相似度,基于KL散度的变体,解决了KL散度非对称的问题。一般地,JS散度是对称的,其取值是 0 到 1 之间。定义如下:
KL散度和JS散度度量的时候有一个问题:
如果两个分布 P,Q 离得很远,完全没有重叠的时候,那么KL散度值是没有意义的,而JS散度值是一个常数。这在学习算法中是比较致命的,这就意味这这一点的梯度为 0。梯度消失了。
3. Wasserstein距离
Wasserstein距离度量两个概率分布之间的距离,定义如下: