python插值法——牛顿法和拉格朗日法的代码实现

直接给出代码,可以看看。

import sympy as sy
from sympy import *
import matplotlib.pyplot as plt
import numpy as np
def f(a,b,n):#拉格朗日插值法
    global x,y#定义全局变量
    ty=ones(1,n+1);rt=0#给出初始空间
    x=symbols('x')#定义函数变量名
    for i in range(n+1):#确定第i个参数
        for j in range(n+1):
            if i != j:#分母不为零,即排除i
                ty[i]=ty[i]*(x-a[j])/(a[i]-a[j])#求积公式
            else:
                continue
    for p in range(n+1):#求最终函数表达式
        qw=b[p]*ty[p]#确定每个部分
        rt+=qw#求和
    return rt
def g(t1,b,n):#牛顿插值法
    global x,y#定义全局变量
    ty1=ones(1,n+1);ty2=ones(1,n+1);op=0;ty3=ones(1,n+1)
    a=1;rt=0;gt=0
    x=symbols('x')
    for m in range(n):
        a=a*(x-t1[m])
        ty2[m+1]=a
    ty1[0] = b[0]
    for j in range(n - gt):
        ty3[j]=(b[j+1]-b[j])/(t1[j+gt+1]-t1[j])
    gt = gt + 1
    for i in range(1,n+1):
        ty1[i]=ty3[0]
        if n-gt+1==0:
            break
        for j in range(n-gt):
            ty3[j]=(ty3[j+1]-ty3[j])/(t1[j+gt+1]-t1[j])
        gt=gt+1
    for p in range(n+1):
        qw=ty1[p]*ty2[p]
        rt+=qw#求和
    return rt
a=[0.4,0.5,0.6,0.7,0.8];t1=a#自变量
b=[-0.916291,-0.693147,-0.510826,-0.357765,-0.223144]#y值
n=4#几次插值
llp=0.54#需要估计的X值
print('拉格朗日插值:{}次插值法所求的表达式:\nf(x)={}'.format(n,f(a,b,n)))
print('x={}时,函数的估计值:{}\nx={}时,函数的准确值:{}'.format(llp,f(a,b,n).subs(x,llp),llp,float(sy.log(llp))))
print('x={}时,插值法的估计误差:{}'.format(llp,f(a,b,n).subs(x,0.54)-float(sy.log(0.54))))
print('拉格朗日插值:取(0.4,-0.916291),(0.5,-0.693147),(0.6,-0.510826)时\n{}次插值法所求的表达式:\nf(x)={}'.format(2,f(a,b,2)))
print('x={}时,函数的估计值:{}\nx={}时,函数的准确值:{}'.format(llp,f(a,b,2).subs(x,llp),llp,float(sy.log(llp))))
print('x={}时,插值法的估计误差:{}'.format(llp,f(a,b,2).subs(x,0.54)-float(sy.log(0.54))))
print('拉格朗日插值:取(0.4,-0.916291),(0.5,-0.693147)时\n{}次插值法所求的表达式:\nf(x)={}'.format(1,f(a,b,1)))
print('x={}时,函数的估计值:{}\nx={}时,函数的准确值:{}'.format(llp,f(a,b,1).subs(x,llp),llp,float(sy.log(llp))))
print('x={}时,插值法的估计误差:{}'.format(llp,f(a,b,1).subs(x,0.54)-float(sy.log(0.54))))
#牛顿
print('牛顿插值:{}次插值法所求的表达式:\nf(x)={}'.format(n,g(a,b,n)))
print('x={}时,函数的估计值:{}\nx={}时,函数的准确值:{}'.format(llp,g(a,b,n).subs(x,llp),llp,float(sy.log(llp))))
print('x={}时,插值法的估计误差:{}'.format(llp,g(a,b,n).subs(x,0.54)-float(sy.log(0.54))))
print('牛顿插值:取(0.4,-0.916291),(0.5,-0.693147),(0.6,-0.510826)时\n{}次插值法所求的表达式:\nf(x)={}'.format(2,f(a,b,2)))
print('x={}时,函数的估计值:{}\nx={}时,函数的准确值:{}'.format(llp,g(a,b,2).subs(x,llp),llp,float(sy.log(llp))))
print('x={}时,插值法的估计误差:{}'.format(llp,g(a,b,2).subs(x,0.54)-float(sy.log(0.54))))
print('牛顿插值:取(0.4,-0.916291),(0.5,-0.693147)时\n{}次插值法所求的表达式:\nf(x)={}'.format(1,f(a,b,1)))
print('x={}时,函数的估计值:{}\nx={}时,函数的准确值:{}'.format(llp,g(a,b,1).subs(x,llp),llp,float(sy.log(llp))))
print('x={}时,插值法的估计误差:{}'.format(llp,g(a,b,1).subs(x,0.54)-float(sy.log(0.54))))
x1=np.arange(0.01,4,0.01)
y1=np.log(x1)#真实值
x2=np.arange(0.01,1.6,0.01)
y2=[]#估计值
for i in x2:
    mio=f(a,b,n).subs(x,i)#估计函数值
    y2.append(mio)#加入到列表中
ax=plt.gca()#调用坐标轴
ax.spines['right'].set_color('none')#去掉右边框线
ax.spines['top'].set_color('none')#去掉顶部框线
ax.spines['bottom'].set_position(('data', 0))#原点对齐
ax.spines['left'].set_position(('data', 0))#原点对齐
plt.plot(x1,y1,linestyle='-',c='r',label='True')#真实值图像
plt.plot(x2,y2,linestyle='--',c='b',label='4Approximate')#估计值图像
y2=[]
for i in x2:
    mio=f(a,b,2).subs(x,i)#估计函数值
    y2.append(mio)#加入到列表中
plt.plot(x2,y2,linestyle='--',c='k',label='2Approximate')#估计值图像
y2=[]
for i in x2:
    mio=f(a,b,1).subs(x,i)#估计函数值
    y2.append(mio)#加入到列表中
plt.plot(x2,y2,linestyle='--',c='g',label='1Approximate')#估计值图像
plt.xlabel('X');plt.ylabel('f(X)')#坐标轴
plt.ylim(-3.5,2)#限制y轴的范围
plt.legend(bbox_to_anchor=(1,0.4))#显示标签
plt.show()#展示图像

运行的结果 


 

拉格朗日插值:4次插值法所求的表达式:
f(x)=38.1787916666667*(5.0 - 10.0*x)*(x - 0.8)*(x - 0.7)*(x - 0.6) + 115.5245*(x - 0.8)*(x - 0.7)*(x - 0.6)*(10.0*x - 4.0) - 255.413*(x - 0.8)*(x - 0.7)*(x - 0.5)*(5.0*x - 2.0) + 178.8825*(x - 0.8)*(x - 0.6)*(x - 0.5)*(3.33333333333333*x - 1.33333333333333) - 37.1906666666666*(x - 0.7)*(x - 0.6)*(x - 0.5)*(2.5*x - 1.0)
x=0.54时,函数的估计值:-0.615984011200000
x=0.54时,函数的准确值:-0.616186139423817
x=0.54时,插值法的估计误差:0.000202128223817155
拉格朗日插值:取(0.4,-0.916291),(0.5,-0.693147),(0.6,-0.510826)时
2次插值法所求的表达式:
f(x)=4.581455*(5.0 - 10.0*x)*(x - 0.6) + 6.93147*(x - 0.6)*(10.0*x - 4.0) - 5.10826*(x - 0.5)*(5.0*x - 2.0)
x=0.54时,函数的估计值:-0.615319840000000
x=0.54时,函数的准确值:-0.616186139423817
x=0.54时,插值法的估计误差:0.000866299423817218
拉格朗日插值:取(0.4,-0.916291),(0.5,-0.693147)时
1次插值法所求的表达式:
f(x)=2.23144*x - 1.808867
x=0.54时,函数的估计值:-0.603889400000000
x=0.54时,函数的准确值:-0.616186139423817
x=0.54时,插值法的估计误差:0.0122967394238168
牛顿插值:4次插值法所求的表达式:
f(x)=2.23144*x - 0.309583333333464*(x - 0.7)*(x - 0.6)*(x - 0.5)*(x - 0.4) + 1.92716666666668*(x - 0.6)*(x - 0.5)*(x - 0.4) - 2.04115*(x - 0.5)*(x - 0.4) - 1.808867
x=0.54时,函数的估计值:-0.615984011200000
x=0.54时,函数的准确值:-0.616186139423817
x=0.54时,插值法的估计误差:0.000202128223816933
牛顿插值:取(0.4,-0.916291),(0.5,-0.693147),(0.6,-0.510826)时
2次插值法所求的表达式:
f(x)=4.581455*(5.0 - 10.0*x)*(x - 0.6) + 6.93147*(x - 0.6)*(10.0*x - 4.0) - 5.10826*(x - 0.5)*(5.0*x - 2.0)
x=0.54时,函数的估计值:-0.615319840000000
x=0.54时,函数的准确值:-0.616186139423817
x=0.54时,插值法的估计误差:0.000866299423816996
牛顿插值:取(0.4,-0.916291),(0.5,-0.693147)时
1次插值法所求的表达式:
f(x)=2.23144*x - 1.808867
x=0.54时,函数的估计值:-0.603889400000000
x=0.54时,函数的准确值:-0.616186139423817
x=0.54时,插值法的估计误差:0.0122967394238170

 

 

  • 3
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
格朗Python代码实现可以分为几个步骤。首先,我们需要导入所需的库,例如matplotlib、numpy、pandas和sympy。然后,我们需要定义一个函数来实现格朗。在这个函数中,我们需要传入x和y的列表作为参数。接下来,我们需要通过遍历x的列表来计算格朗的多项式。具体来说,我们需要使用X和Y两个变量来计算每个项的,并将它们相乘。然后,我们将这些项相加得到最终的多项式。最后,我们可以使用plot函数将多项式绘制成图形。 以下是一个示例的Python代码实现: ```python import matplotlib.pyplot as plt import numpy as np import pandas as pd from sympy import expand from sympy.abc import x def lagrange(xx, y): l = len(y) l_n = 0 for k in range(l): xxx = xx.copy() x_k = xxx[k] xxx.pop(k) l_k = 1 for i in range(len(xxx)): l_k *= (x - xxx[i]) / (x_k -xxx[i]) l_n += y[k * l_k return expand(l_n) # 读取数据 data = pd.read_csv('data.csv') # 获取x和y的 xx = data['x'] y = data['y'] # 计算多项式 lagrange_interpolation_polynomial = lagrange(xx, y) # 打印多项式 print("格朗多项式为:", lagrange_interpolation_polynomial) # 生成函数的曲线 x2 = np.linspace(-1, 4, 100) y1 = [] for i in range(len(x2)): y1.append(lagrange_interpolation_polynomial.subs(x, x2[i])) # 绘制散点图和函数曲线 plt.figure(figsize=(8, 4)) plt.scatter(xx, y, c='red') plt.plot(x2, y1, '-') plt.show() ``` 这是一个示例代码,其中包含了数据读取、多项式的计算和绘制图形等步骤。你可以根据自己的需求和数据进行相应的调整和修改。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Python实现格朗示例](https://download.csdn.net/download/weixin_38717156/13770742)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [格朗——python代码实现](https://blog.csdn.net/m0_72662900/article/details/128278422)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [格朗Python程序](https://blog.csdn.net/weixin_48615832/article/details/115582544)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eyu.sir

谢谢。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值