人脸方向学习(九):Face Detection-MTCNN解读

整理的人脸系列学习经验:包括人脸检测、人脸关键点检测、人脸优选、人脸对齐、人脸特征提取等过程总结,有需要的可以参考,仅供学习,请勿盗用。https://blog.csdn.net/TheDayIn_CSDN/article/details/93199307

MTCNN解读

论文地址:https://arxiv.org/ftp/arxiv/papers/1604/1604.02878.pdf

Github地址(tensorflow版本):https://github.com/AITTSMD/MTCNN-Tensorflow

Github地址(caffe版本):https://github.com/kpzhang93/MTCNN_face_detection_alignment

思路

初版前后端检测模型直接采用开源的MTCNN,直接做人脸分类、人脸框和关键点回归,前期用效果还可以,但是漏检和误检很多,后续考虑替换别的检测模型。关键点回归的五点准确率还可以,刚开始用来做关键点对齐厚做特征提取。这里简单介绍下基本原理,后续讲解训练流程。

一、论文简介

MTCNN,Multi-task convolutional neural network(多任务卷积神经网络),将人脸区域检测与人脸关键点检测放在了一起,它的主题框架类似于cascade。总体可分为P-Net、R-Net、和O-Net三层网络结构。

它是2016年中国科学院深圳研究院提出的用于人脸检测任务的多任务神经网络模型,该模型主要采用了三个级联的网络,采用候选框加分类器的思想,进行快速高效的人脸检测。这三个级联的网络分别是快速生成候选窗口的P-Net、进行高精度候选窗口过滤选择的R-Net和生成最终边界框与人脸关键点的O-Net。和很多处理图像问题的卷积神经网络模型,该模型也用到了图像金字塔、边框回归、非最大值抑制等。

基本框架

 

https://blog.csdn.net/qq_36782182/article/details/83624357

https://blog.csdn.net/weixin_42072543/article/details/89428927

https://blog.csdn.net/qq_30159015/article/details/79699855

https://blog.csdn.net/joshua_1988/article/details/83038639


 

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值