去年蓝桥杯学校选人时的一道题,现在看来不算难,当时数据结构还没学。。。。。。。。。
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1869
六度分离
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4378 Accepted Submission(s): 1780
Problem Description
1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人,即只用6个人就可以将他们联系在一起,因此他的理论也被称为“六度分离”理论(six degrees of separation)。虽然米尔格兰姆的理论屡屡应验,一直也有很多社会学家对其兴趣浓厚,但是在30多年的时间里,它从来就没有得到过严谨的证明,只是一种带有传奇色彩的假说而已。
Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。
Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。
Input
本题目包含多组测试,请处理到文件结束。
对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。
接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。
除了这M组关系,其他任意两人之间均不相识。
对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。
接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。
除了这M组关系,其他任意两人之间均不相识。
Output
对于每组测试,如果数据符合“六度分离”理论就在一行里输出"Yes",否则输出"No"。
Sample Input
8 7 0 1 1 2 2 3 3 4 4 5 5 6 6 7 8 8 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0
Sample Output
Yes Yes
#include<stdio.h>
#include<string.h>
short map[110][110];
int n;
int Min(int a,int b)
{
return a>b?b:a;
}
void set()
{
int i,j;
for(i=0;i<=n;i++)
for(j=0;j<=n;j++)
map[i][j]=10;
}
int main()
{
int i,j,k,m,a,b;
while(~scanf("%d%d",&n,&m))
{
set();
for(i=0;i<m;i++)
{
scanf("%d%d",&a,&b);
map[a][b]=map[b][a]=1;
}
for(k=0;k<n;k++)
for(i=0;i<n;i++)
for(j=0;j<n;j++)
map[i][j]=Min(map[i][j],map[i][k]+map[k][j]);
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
if(map[i][j]>7)break;
if(j<n)break;
}
printf(i==n?"Yes\n":"No\n");
}
return 0;
}
同样的代码,GCC 109毫秒 C 93毫秒 ,至少,这个版本的VC算法优化要好于GCC