300. 最长递增子序列——贪心 + 二分查找

该博客介绍了一种使用动态规划求解整数数组中最长严格递增子序列长度的方法。通过构建升序数组并进行二分查找,实现了高效地更新最长递增子序列。代码实现为C++,并通过所有测试用例,运行时间和内存使用效率较高。

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组[0,3,1,6,2,2,7] 的子序列。

示例 1:

输入:nums = [10,9,2,5,3,7,101,18] 输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:

输入:nums = [0,1,0,3,2,3] 输出:4
示例 3:

输入:nums = [7,7,7,7,7,7,7] 输出:1

提示:

1 <= nums.length <= 2500
-104 <= nums[i] <= 104

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        //我们动态的构建一个升序数组
        //将原数组的逐个取出与升序数组的末尾进行比较
        //如果比末尾还大,加在升序数组末尾,反之,在升序数组中找到合适的位置替换
        int n = nums.size();
        vector<int> dp;
        //由于是跟末尾比较,初始数组必须包含一个元素
        dp.push_back(nums[0]);
        for(int i = 1; i < n; ++i){
            //比末尾大,在升序数组末尾加入该元素
            if(dp.back() < nums[i])
                dp.push_back(nums[i]);
            //比末尾小,对升序数组进行二分查找,找到替换的元素进行替换
            else{
                int left = 0, right = dp.size() - 1;
                while(left <= right){
                    int mid = (left + right) >> 1;
                    //大了往右找
                    if(dp[mid] < nums[i]){
                        left = mid + 1;
                    }
                    //小了或相等往左找
                    else
                        right = mid - 1;
                }
                //left就是最后要替换的
                dp[left] = nums[i];
            }
        }
        return dp.size();
    }
};

Accepted
54/54 cases passed (4 ms)
Your runtime beats 98.43 % of cpp submissions
Your memory usage beats 94.27 % of cpp submissions (10.1 MB)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值