神经网络与深度学习课程-第七周总结

序列模型

分类问题与预测问题

⚫ 图像分类:当前输入−>当前输出
⚫ 时间序列预测:当前+过去输入−>当前输出
在这里插入图片描述

自回归模型

在这里插入图片描述
在这里插入图片描述

数据预处理

特征编码

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

文本处理

按字母处理

⚫ 给定文本片段,如:
S = “… to be or not to be…”.
⚫ 将文本切分为字母序列:
L = […, ‘t’, ‘o’, ‘ ’, ‘b’, ‘e’, …],

按单词处理(文本切分)

⚫ 给定文本片段,如:
S = “… to be or not to be…”.
⚫ 将文本切分为单词序列:
L = […, to, be, or, not, to, be, …],

文本预处理与词嵌入

文本预处理

一篇文章可以被简单地看作一串单词序列,甚至是一串字符序列。 我们将解析文本的常见预处理步骤。 这些步骤通常包括:
1.将文本作为字符串加载到内存中。
2.将字符串切分为词元(如单词和字符)。
3.建立一个字典,将拆分的词元映射到数字索引。
4.将文本转换为数字索引序列,方便模型操作。

第一步:读取数据集
第二步:词汇切分
第三步:构建词索引表

文本嵌入

RNN模型

在这里插入图片描述
在这里插入图片描述

RNN示例

使用RNN进行IMDB评论:
在这里插入图片描述

门控循环单元(GRU)

长短期记忆网络(LSTM)

模型

在这里插入图片描述
在这里插入图片描述

深度循环神经网络

在这里插入图片描述

双向循环神经网络

生成对抗网络(GAN)

生成对抗网络(GANs, generative adversarial networks)是由Ian Goodfellow等
人在2014年的Generative Adversarial Networks一文中提出。
模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别
模型(Discriminative Model)的互相博弈学习产生相当好的输出。
原始 GAN 理论中,并不要求 G 和 D 都是神经网络,只需要是能拟合相应
生成和判别的函数即可。但实用中一般均使用深度神经网络作为 G 和 D

一个优秀的GAN应用需要有良好的训练方法,否则可能由于神经网络模型
的自由性而导致输出不理想。

整体结构

在这里插入图片描述
生成对抗网络(GAN)的初始原理十分容易理解,即构造两个神经网络,一
个生成器,一个鉴别器,二者互相竞争训练,最后达到一种平衡(纳什平
衡)。
GAN 启发自博弈论中的二人零和博弈(two-player game), GAN 模型中
的两位博弈方分别由生成式模型(generativemodel, G)和判别式模型(
discriminative model, D)充当。
⚫ 生成模型 G 捕捉样本数据的分布,用服从某一分布(均匀分布,高斯
分布等)的噪声 z 生成一个类似真实训练数据的样本,追求效果是越
像真实样本越好。
⚫ 判别模型 D 是一个二分类器,估计一个样本来自于训练数据(而非生
成数据)的概率,如果样本来自于真实的训练数据, D 输出大概率,
否则, D 输出小概率。

NeRF

NeRF(Neural Radiance Fields)最早在2020年ECCV会议上发表,作为Best
Paper,其将隐式表达推上了一个新的高度,仅用 2D 的 posed images 作为
监督,即可表示复杂的三维场景。 NeRF迅速发展起来,被应用到多个技
术方向上,例如新视点合成、三维重建等等,并取得非常好的效果。

Transformer

大语言模型

语言-图像模型

在多模态异常检测的背景下对GPT-4V进行了彻底的评估
➢ 考虑四个模式:图像、视频、点云和时间序列
➢ 探索九项特定任务,包括工业图像异常检测/定位、点云异常检测、医学
图像异常检测/定位,逻辑异常检测,行人异常检测、交通异常检测和时
间序列异常检测。
➢ 评估包括15个数据集的多样性。
在这里插入图片描述

  • 15
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值