自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(683)
  • 资源 (16)
  • 收藏
  • 关注

原创 论文解析八: GAN:Generative Adversarial Nets(生成对抗网络)

文章提出了一个新的framework(framework通常是一个比较大的模型)用来估计生成模型,通过对抗的过程,同时会训练两个模型**生成模型G:**用来抓取整个数据的分布(生成模型就是要对整个数据的分布进行建模,使得能够生成各种分布,这里的分布就是指的生成图片、文字或者电影等,在统计学中,整个世界是通过采样不同的分布来得到的,所以如果想要生成东西,就应该抓取整个数据的分布)**辨别模型D:**用来估计样本到底是从真正的数据生成出来的还是来自生成模型生成出来的。

2024-10-23 12:13:53 1195

原创 论文解析七: GNN与GCN(图神经网络)一站式详细讲解

图是用来表示entity(实体)之间的关系实体就是一个点(node,顶点)关系就是一个边(edge)顶点(node)边:顶点之间的关系全局信息:每个顶点、每条边和整个图表示的信息使用向量来标示顶点,边,全局属性顶点(黄色)可以用一个embeding(向量)来表示它里面的属性,一共有六个值,高矮表示值的大小边(蓝色)也可以使用向量来表示,长度可以和顶点不一样,这里使用的是一个长度为8的向量,即边中所有的属性用一个长度为8的向量来表示全局信息(粉色)可以用一个长为5的向量来表示。

2024-10-23 11:14:03 1777

原创 论文解析六:Transformer----Attention Is All You Need---注意力是你所需要的

在主流的序列转录模型里面,主要是依赖于比较复杂的循环或者是卷积神经网络一般是使用encoder和decoder的架构序列转录模型:给定一个序列,然后生成另外一个序列,比如机器翻译在性能最好的模型之中,通常也会在编码器和解码器之间使用注意力机制这篇文章提出了一个新的简单的架构(simple,之前都倾向于写成novel),这个模型就是Transformer仅仅依赖于注意力机制,而没有用之前的循环或者卷积。做了两个机器翻译的实验,显示这个模型在性能上特别好,可以并行度更好然后使用更少的时间来训练。

2024-10-14 10:52:09 879

原创 论文解析五:VGGNet 用于大规模图像识别的深度卷积网络

​ VGG网络研究了卷积网络深度在大规模的图像识别环境下对准确性的影响。我们的主要贡献是使用非常小的(3×3)卷积滤波器架构对网络深度的增加进行了全面评估,这表明通过将深度推到16-19 加权层可以实现对现有技术配置的显著改进。VGG网络对于其他数据集泛化的很好,在其它数据集上取得了最好的结果。​ 随着 ConvNets 在计算机视觉领域越来越商品化,为了达到更好的准确性, 已经进行了许多尝试来改进​ 1.使用了更小的感受野窗口尺寸和第一卷积层更小的步长。

2024-10-14 10:22:11 767

原创 论文解析四:AlexNet 使用深度卷积神经网络进行 ImageNet 分类

表示了我们用了一个深度卷积神经网络来进行图片分类,取得了一个非常好的效果。深度卷积网络由60million个参数,65w个神经元,以及五个卷积层和三个全连接层组成。为了加快训练,用到了GPU加速实现。用了dropout这个正则化方法来减少过拟合。引出ImageNet这个数据集很大很好。对于ImageNet这个很大的模型,我们采用CNN来作为我们的模型。对于CNN计算成本高(容易overfitting+训练不动),我们利用GPU以及高度优化的2D卷积来实现CNN的训练。

2024-10-08 16:34:23 1176

原创 论文解析三: D2-Net 用于联合描述和检测局部特征的可训练CNN

​解决在困难的成像条件下寻找可靠的像素级对应的问题。​提出一种由单一卷积神经网络发挥双重作用的方法:它同时是一个密集的特征描述符和一个特征检测器。通过将检测推迟到后期阶段,所获得的关键点比基于低层结构早期检测的传统关键点更稳定。我们证明了该模型可以使用从现成的大规模SfM重建中提取的像素对应来训练,而不需要任何进一步的注释。该方法在困难的亚琛昼夜定位数据集和InLoc室内定位基准上都获得了最先进的性能,以及在其他图像匹配和三维重建基准上具有竞争力的性能。

2024-10-08 15:26:44 1334

原创 论文解析二: SuperGlue 同时进行特征匹配以及滤除外点的网络

​ 本文提出了一种能够同时进行特征匹配以及滤除外点的网络。其中特征匹配是通过求解可微分最优化转移问题( optimal transport problem)来解决;本文基于注意力机制提出了一种将2D特征点以及聚合机制,这使得SuperGlue能够同时感知潜在的3D场景以及进行特征匹配。该网络能够在GPU上达到实时,预期能够集成到slam算法中位置如下图​ 在经典的SLAM框架中,前端进行特征提取,后端进行非线性优化,而。

2024-09-10 12:26:34 1448

原创 论文解析一: SuperPoint 一种自监督网络框架,能够同时提取特征点的位置以及描述子

​ 对于特征点提取部分,网络先将维度( W / 8 , H / 8 , 128 )的特征处理为( W / 8 , H / 8 , 65 )大小,这里的65的含义是特征图的每一个像素表示原图8 × 8 的局部区域加上一个当局部区域不存在特征点时用于输出的Dustbin通道,通过。​ 对于特征描述子提取部分,同理,我们还是使用encoder层的输出(H,W,128)。,这一层是为了8×8的局部区域内没有特征点时,经过Softmax后64维的特征势必还是会有一个相对较大的值输出,但加入。后就可以避免这个问题。

2024-09-10 11:49:01 1449

原创 24 优化算法

深度学习模型大多是非凸的所以关于凸优化的很多理论无法使用小批量随机梯度下降是最常用的优化算法冲量对梯度做平滑冲量法是一个简单的稳定优化的算法Adam 对梯度做平滑,且对梯度各个维度值做重新调整通过实践发现,Adam 不一定比冲量法准确率高或者是收敛快,但是整体来讲 Adam 是比较稳定的,Adam 对学习率不那么敏感,使得调参相对来讲会更加容易一点范围之中(进行维度上的调整)分母中的 ε 的作用是保证分母不等于零。

2024-08-19 18:33:44 671

原创 23 注意力机制—BERT

在计算机视觉中比较流行,将 ImageNet 或者更大的数据集上预训练好的模型应用到其他任务中,比如小数据的预测、图片分类或者是目标检测。使用预训练好的模型(例如 word2vec 或语言模型)来抽取词、句子的特征。在更换任务之后,还是需要构建新的网络来抓取新任务需要的信息。做迁移学习的时候,一般不更新预训练好的模型。

2024-08-19 18:18:09 279

原创 22 注意力机制—Transformer

和 seq2seq 有点类似,不同之处在于 Transformer 是一个纯使用注意力的编码-解码器编码器和解码器都有 n 个 Transformer 块每个块里使用多头(自)注意力(multi-head attention),基于位置的前馈网络(Positionwise FFN),残差连接和层归一化编码器和解码器中各有一个自注意力,但是在编码器和解码器中传递信息的是一个正常的注意力。

2024-08-13 09:23:06 436

原创 21 注意力机制—自注意力

自注意力池化层将 xi 当作 key ,value query 来对序列抽取特征完全并行、最长序列为 1 、但对长序列计算复杂度高可以完全并行,和 CNN 是一样的,所以计算效率比较高最长序列为 1 ,对于任何一个输出都能够看到整个序列信息,所以这也是为什么当处理的文本比较大、序列比较长的时候,通常会用注意力和自注意力但是问题是对长序列的计算复杂度比较高,这也是一大痛点位置编码在输入中加入位置信息,使得自注意力能够记忆位置信息。

2024-08-13 09:14:22 194

原创 20 注意力机制—注意力机制在seq2seq

Seq2Seq 中通过编码器最后时刻的隐藏状态在编码器和解码器中传递信息注意力机制可以根据解码器 RNN 的输出来匹配到合适的编码器 RNN 的输出来更有效地传递信息在预测词元时,如果不是所有输入词元都是相关的,加入注意力机制能够使 RNN 编码器-解码器有选择地统计输入序列的不同部分(通过将上下文变量视为加性注意力池化的输出来实现)

2024-08-05 09:35:49 111

原创 19 注意力机制

心理学认为人通过随意线索(故意)和不随意线索(无意)选择注意点注意力机制中,通过query(随意线索)和 key(不随意线索)来有偏向性地选择输入,一般可以写作f(x)的 key 和所有的不随意线索的 key 做距离上的计算(α(x,xi),通常称为注意力权重),分别作为所有的 value 的权重这并不是一个新兴的概念,早在 60 年代就已经有非参数的注意力机制了接下来会介绍不同的权重设计。

2024-08-05 09:20:48 187

原创 18现代循环神经网络—seq2seq与束搜索

Seq2Seq 从一个句子生成另一个句子,机器翻译算是其中的一个应用场景Seq2Seq 使用的是编码器-解码器的架构,编码器和解码器都是 RNN将编码器最后时间隐藏状态来初始解码器隐状态来完成信息传递在“编码器-解码器”训练中,强制教学方法将**原始输出序列(而非预测结果)**输入到解码器中BLEU 是一种常用的评估方法,它通过测量预测序列和标签序列之间的 n 元语法的匹配度来衡量生成预测序列的好坏序列搜索策略包括贪心搜索、穷举搜索和束搜索。

2024-07-29 12:00:41 223

原创 17现代循环神经网络—机器翻译,编码器-解码器

机器翻译指的是将文本序列从一种语言自动翻译成另外一种语言使用单词级词元化时的词表大小,将明显大于使用字符级词元化时的词表大小。为了缓解这一问题,可以通过将低频次元视为相同的未知词元来解决通过截断和填充文本序列,可以保证所有的文本序列都具有相同的长度,便于以小批量的方式进行加载使用编码器-解码器架构的模型,编码器负责表示输入,解码器负责输出“编码器-解码器”架构可以将长度可变的序列作为输入和输出,因此适用于机器翻译等序列转换问题。

2024-07-29 11:56:19 127

原创 16现代循环神经网络—深度循环与双向循环

深度循环神经网络使用多个隐藏层来获得更多的非线性性GRU、RNN、LSTM 在结构上都是相同的,只是隐状态 H 的计算方式有区别,所以它们加深神经网络的原理都是相同的在深度循环神经网络中,隐状态的信息被传递到当前层的下一时间步和下一层的当前时间步存在许多不同风格的深度循环神经网络,如长短期记忆网络、门控循环单元或经典循环神经网络深度循环神经网络需要大量的调参(如学习率和修剪)来确保合适的收敛,模型的初始化也需要谨慎双向循环神经网络通过反向更新的隐藏层来利用方向时间信息。

2024-07-22 16:21:02 646

原创 15现代循环神经网络—GRU与LSTM

GRU 中引入了两个额外的门,每个门可以学习的参数和 RNN 一样多,整个可学习的权重数量是 RNN 的三倍Rt 和 Zt 都是控制单元,用来输出取值为 0~1 的数值Rt 用来衡量在更新新的隐藏状态的时候,要用到多少过去隐藏状态的信息Zt 用来衡量在更新新的隐藏状态的时候,需要用到多少当前Xt相关的信息当 Zt 全为 0 , Rt 全为 1 时,等价于 RNN当 Zt 全为 1 时,直接忽略掉当前 XtGRU 通过引入 Rt 和 Zt ,从而能够在各种极端情况之间进行调整。

2024-07-22 16:13:21 456 1

原创 14循环神经网络—RNN

对隐藏状态使用循环计算的神经网络称为循环神经网络(RNN),循环神经网络的输出取决于当下输入和前一时间的隐变量循环神经网络的隐藏状态可以捕获当前时间步序列的历史信息隐变量是用来存储历史信息和下一个历史信息的转换规则,所以在拿到过去的输入和当前的隐藏状态就能够预测当前的输出Whh 拥有一定的时序预测目的应用到语言模型中时,循环神经网络根据当前词预测下一次时刻词根据当前的输入更新当前时刻的隐藏状态就能够预测下一个时刻的输出RNN 是一个隐变量模型,隐变量是一个向量。

2024-07-16 10:37:45 277

原创 13 循环神经网络—序列模型,语言模型

时序模型中,当前数据跟之前观察到的数据相关自回归模型使用自身过去数据来预测未来马尔科夫模型假设当前只跟当前少数数据相关,每次都使用固定长度的过去信息来预测现在,从而简化模型潜变量模型使用潜变量来概括历史信息,使得模型拆分成两块:一块是根据现在观测到的数据来更新潜变量;另一块是根据更新后的潜变量和过去的数据来更新将来要观测到的数据内插法(在现有观测值之间进行估计)和外推法(对超出已知观测范围进行预测)在实践的难度上差别很大。

2024-07-16 10:12:59 1525

原创 12计算机视觉—全连接卷积与迁移学习(风格迁移)

全卷积网络首先使用卷积神经网络抽取图像特征,然后通过 1 * 1 卷积层将通道数变换为类别个数,最后通过转置卷积层将特征图的高和宽变换为输入图像的尺寸在全卷积网络中,可以将转置卷积层初始化为双线性插值的上采样样式迁移常用的损失函数由 3 部分组成:内容损失、样式损失和全变分损失内容损失使合成图片与内容图片在内容特征上接近样式损失使合成图片与样式图片在样式特征上接近全变分损失有助于减少合成图片中的噪点。

2024-07-10 10:56:56 264

原创 11计算机视觉—语义分割与转置卷积

与目标检测不同,语义分割可以识别并理解图像中每一个像素的内容:其语义区域的标注和预测是像素级的。与目标检测相比,语义分割标注的像素级的边框显然更加精细。然而如果输入和输出图像的空间维度相同,在以像素级分类的语义分割中将会很方便。​ 为了实现这一点,尤其是在空间维度被卷积神经网络层缩小后,我们可以使用另一种类型的卷积神经网络层,它可以增加上采样中间层特征图的空间维度。在标签图像中,白色和黑色分别表示边框和背景,而其他颜色则对应不同的类别。​ 通过上面定义的两个常量,我们可以方便地查找标签中每个像素的类索引。

2024-07-10 10:42:00 208

原创 10计算机视觉—物体检测算法

R-CNN是最早,也是最有名的一类基于锚框和CNN的目标检测算法Fast/Faster R-CNN持续提升性能Faster R-CNN和Mask R-CNN是在最高精度场景下的常用算法SSD通过单神经网络来检测以每个像素为中心的产生多个锚框在多段的输出上进行多尺度的检测。

2024-07-03 09:57:32 270

原创 9.计算机视觉—目标检测

物体检测识别图片里的多个物体的类别和位置位置通常用边缘框表示一类目标检测算法基于锚框来检测首先生成大量锚框,并赋予标号,每个锚框作为一个样本进行训练在预测时,使用NMS来去除冗余的预测。

2024-07-03 09:42:46 319

原创 8.计算机视觉—增广和迁移

微调通过使用在大数据上得到的预训练好的模型来初始化模型权重来完成提升精度预训练模型质量很重要微调通常速度更快,经度更高。

2024-06-27 09:58:31 334

原创 7.计算机视觉—硬件和训练

一台机器可以安装多个GPU在训练和预测时,我们将一个小批量计算切分到多个GPU上来达到加速目的常用切分方案有数据并行模型并行通道并行(数据+模型并行)当一个模型能用单卡计算时,通常使用数据并行拓展到多卡上模型并行则用在超大模型上。

2024-06-27 09:32:01 176

原创 6.深度卷积神经网络

AlexNet是更大更深的LeNet,10倍参数个数,260倍计算复杂度新进入了Dropout,ReLu,最大池化层和数据增强AlexNet赢下2012ImageNet竞赛后,标志这新的一轮神经网络热潮的开始VGG使用可重复使用的卷积块来构建深度卷积神经网络不同的卷积块个数和超参数可以得到不同复杂的变种NiN块在卷积层后 加两个1 * 1卷积层后者对每个像素增加了非线性NiN使用全集平均池化层来代替VGG和AlexNet中的全连接层不容易过拟合,更少的参数个数。

2024-06-18 09:42:13 350

原创 5.卷积神经网络

对全连接层使用平移不变性和局部性得到卷积层卷积层将输入和核矩阵进行交叉相关计算,加上偏移后得到输出核矩阵和偏移是可学习的参数核矩阵的大小是超参数填充和步幅是卷积层的超参数填充在周围添加额外的行/列,来控制输出形状的减少量步幅是每次滑动核窗口时的行/列的步长,可以成倍的减少输出形状核大小最为关键,填充一般是默认核减1,步幅看需求输出通道数是卷积层的超参数每个输入通道有独立的二维卷积核,所有通道结果相加得到一个输出通道结果每个输出通道有独立的三维卷积核。

2024-06-18 09:10:11 457

原创 4.深度学习计算

构造一个没有任何参数的自定义层#向该层提供一些数据#将层作为组件合并到构建更复杂的模型中#定义带参数的图层def __init__(self, in_units, units):#in_units输入参数 units输出参数linear = torch.matmul(X, self.weight.data) + self.bias.data#matmul函数执行矩阵乘法#使用带参数的图层构建模型。

2024-06-15 09:44:05 74

原创 3.多层感知机

感知机是一个二分类模型,是最早的AI模型之一它的求解算法等价于使用批量大小为1的梯度下降 批量大小为1:指在训练神经网络时,每次更新参数时只使用单个样本的数据它不能拟合XOR函数,导致第一次AI寒冬多层感知机使用隐藏层和激活函数来得到非线性模型常用激活函数是Sigmoid,Tanh,ReLu使用Softmax来处理多类分类超参数为隐藏层数和各个隐藏层大小训练数据集:训练模型参数验证数据集:选择模型超参数非大数据集上通常使用K-则交叉验证。

2024-06-15 09:29:01 322

原创 2.线性神经网络

线性回归是对N维输入的加权,外加偏差使用平方损失来衡量预测值和真实值的差异线性回归有显示解,一般都网络都是非线性的没有显示解线性回归可以看做是单层神经网络梯度下降通过不断沿着反梯度方向更新参数求解小批量随机梯度下降是深度学习默认的求解算法两个重要的超参数是批量大小和学习率#初始化模型参数# PyTorch不会隐式(自动)地调整输入的形状。因此,#创建了一个简单的神经网络模型 net。

2024-06-13 11:28:52 348

原创 1.动手学习深度学习课程安排及深度学习数学基础

​ 首先,我们导入torch,注意,虽然它被称为pytorch,但我们应该导入torch而不是pytorch。矩阵相当于一个扭曲空间,把下图中的蓝线和绿线,扭曲到不同方向和长度。

2024-06-13 10:51:15 194

原创 我的创作纪念日——我就想获得一个纪念勋章,,嘿嘿嘿

提示:你过去写得最好的一段代码是什么?提示:当前创作和你的工作、学习是什么样的关系。提示:可以和大家分享最初成为创作者的初心。提示:在创作的过程中都有哪些收获。提示:职业规划、创作规划等​​。

2024-05-19 11:46:18 198

原创 150个 HTML5 成体系的网站模版 量大慢选 持续更新中

HTML5 网站模版 No.1 HTML5 网站模版 No.2

2024-04-13 14:50:03 495 1

原创 7个精选的矢量数据库和搜索引擎项目

向量数据库是一种用于存储、检索和分析向量的数据库。在图片搜索、语音搜索等应用中,不是直接存储和对比原始数据,而是使用向量表示,通常为256/512个浮点数数组。它提供标准的SQL访问接口,同时支持高效的数据组织、检索和分析能力,包括传统数据库管理结构化数据的能力。向量数据库解决两个主要问题:高效的检索和高效的分析。检索方面主要用于图片搜索,例如人脸、人体、车辆、商品图片等检索,甚至人脸支付。分析方面广泛应用于安全领域,如人脸撞库,通过对比相似案发现场周边的人像等。

2023-12-16 20:12:20 1140 1

原创 Redis-Stack项目

推荐理由:RedisGraph是一个基于Redis的图数据库扩展,它使用图结构来存储和查询数据,提供了快速的图遍历和图分析功能。推荐理由:RedisBloom是一个在Redis上实现的布隆过滤器和其他数据结构的扩展,可以提供高效的元素查找和去重功能,适用于大规模数据集的快速筛选和过滤,具有较低的误判率和高效的存储利用率。项目标签:[搜索模型] [内存数据库] [NoSQL] [搜索引擎]项目标签:[搜索模型] [内存数据库] [NoSQL]项目标签:[图模型] [内存数据库] [NoSQL]

2023-12-16 08:00:00 232

原创 7个计算机视觉领域的项目精选

它提供了方便的方式帮助用户在视频中追踪和分割感兴趣的对象,为视频分析和处理提供了实用的工具。推荐理由:这个项目可以自动分割和识别图像、视频和音频中的任何对象,无需深度学习专业知识,是一个非常实用的图像处理工具。推荐理由:这个创意动画工具使用对象检测模型、姿态估计模型和基于图像处理的分割方法,可以快速创建数字版的图画,并通过传统的计算机图形技术进行变形和制作成动画。推荐理由:SEEM允许用户使用不同类型的提示轻松分割图像,包括视觉提示(点,标记,框,涂鸦和图像段)和语言提示(文本和音频)等。

2023-12-14 16:10:55 1567

原创 ChatGPT热门项目

推荐理由:这是由开发者Significant Gravitas推出的项目,可根据你设置的目标,使用GPT-4自动帮你完成所有的任务。推荐理由:开源双语对话语言模型,一个基于大型预训练语言模型 GPT 的对话生成模型,用 GPT-2 进行微调,支持中文和英文,让机器变得更有智能。推荐理由:一个增强视觉语言理解的工具,基于先进的大型语言模型。推荐理由:一个开源的聊天机器人生态系统,它在大量辅助数据上进行了训练,具有强大的对话生成能力。推荐理由:用于学术研究的GPT模型,可生成论文、摘要和对话等。

2023-12-14 15:25:49 542 1

原创 回味童年经典游戏的项目

推荐理由:吃豆人(Pac-Man)是一个比较经典的游戏,最早由同名街机游戏移植至Atari 2600平台的游戏,最早由南梦宫公司于1980年在街机上推出,后由雅达利公司于1982年3月中旬发售Atari 2600版。在线试玩:http://martindrapeau.github.io/backbone-game-engine/super-mario-bros/index.html。在线试玩网址:https://battle-city.js.org/#/stage/1。主要语言:JavaScript。

2023-12-10 22:18:07 141

原创 为什么Git的教程都那么繁杂?

作为产品设计,为了让“单一的操作出现单一的结果“,就必须对上述情况进行简化,例如 ”要删除云端的文件,必须先满足所有设备对 A.jpeg 的共识是一致的“,从而确认 “删除云端“ 的操作,不会因为其他设备的后续同步带来歧义。即使只有1个设备,也按多设备的方案去处理。只不过,绝大部分人没有深度思考 + 拆分的能力,而觉得 “实时同步“ 很简单,即 “你按我脑海中的想法去做,我想留就留,我想删就删,如果我想错了,你还得救回来“。对用户而言,一个单一的 “删除云端文件操作”,根据不同的情形,它的结果是不单一的。

2023-11-22 09:39:46 128

Ladybird真正独立的网络浏览器

Ladybird使用多进程架构,包括一个主UI进程、几个WebContent渲染器进程、一个ImageDecoder进程和一个RequestServer进程。 图像解码和网络连接是在进程外完成的,以增强对恶意内容的鲁棒性。每个选项卡都有自己的渲染器进程,该进程与系统的其他部分隔离开来。 目前,许多核心库支持组件都继承自SerenityOS: LibWeb:Web渲染引擎 LibJS:JavaScript引擎 LibWasm:WebAssembly实现 LibCrypto/LibTLS:密码学原语和传输层安全 LibHTTP:HTTP/1.1客户端 LibGfx:2D图形库、图像解码和渲染 LibUnicode:Unicode和区域设置支持 LibMedia:音频和视频播放 LibCore:事件循环,操作系统抽象层 LibIPC:进程间通信

2025-01-07

互联网操作系统!可自行托管

Puter 是一个先进的互联网操作系统,设计为功能丰富、速度极快且高度可扩展。Puter 可用作: 一个以隐私为优先的个人云,将所有文件、应用程序和游戏保存在一个安全的地方,随时随地可访问。 构建和发布网站、Web 应用程序和游戏的平台。 Dropbox、Google Drive、OneDrive 等的替代品,具有全新的界面和强大的功能。 服务器和工作站的远程桌面环境。 一个友好的项目和社区,学习 Web 开发、云计算、分布式系统等更多内容!

2025-01-07

用于将文件和办公文档转换为Markdown的Python工具

MarkItDown是一个将各种文件转换为Markdown的实用程序(例如,用于索引、文本分析等)。它支持: PDF 幻灯片演示文稿软件 Word 擅长 图像(EXIF元数据和OCR) 音频(EXIF元数据和语音转录) HTML 基于文本的格式(CSV、JSON、XML) ZIP文件(迭代内容)

2025-01-07

The official Meta Llama 3 GitHub site

llama模型-基础模型的中央仓库,包括基本实用程序、模型卡、许可证和使用策略 PurpleLlama-Llama Stack的关键组成部分,专注于安全风险和推理时间缓解 llama工具链-模型开发(推理/微调/安全屏蔽/合成数据生成)接口和规范实现 llama代理系统-E2E独立的llama Stack系统,以及有主见的底层接口,可以创建代理应用程序 llama食谱-社区驱动的脚本和集成 如果您有任何疑问,请随时在上述任何repo上提交问题,我们将尽最大努力及时回复。 非常感谢。 (已弃用)Meta Llama 3 我们正在释放大型语言模型的力量。我们最新版本的Llama现在可供个人、创作者、研究人员和各种规模的企业使用,以便他们能够负责任地实验、创新和扩展自己的想法。 此版本包括预训练和指令调优的Llama 3语言模型的模型权重和启动代码,包括8B到70B参数的大小。 这个存储库是加载Llama 3模型和运行推理的最小示例。有关更多详细示例,请参阅骆驼食谱。 下载 要下载模型权重和标记器,请访问Meta Llama网站并接受我们的许可证。 一旦您的请求获得批准,您将通过电子邮件收到

2025-01-03

Docker容器中的Windows

特征 ISO下载器 KVM加速 基于Web的查看器 使用方法 通过Docker撰写: 服务: 窗户: 图片:dockurr/windows 容器名称:窗口 环境: 版本:“11” 设备: -/dev/kvm -/dev/net/tun cap_日期: -NET_ADMIN 端口: - 8006:8006 -3389:3389/tcp -3389:3389/udp 停止轨道周期:2m 通过Docker CLI: docker run-it--rm-p 8006:8006-device=/dev/kvm-device=/dev/net/tun--cap add net_ADMIN--停止超时120 dockurr/windows 兼容性 产品平台 Docker引擎Linux Docker桌面Windows 11

2025-01-03

ChatTTS是一种专门为LLM助手等对话场景设计的文本到语音模型

会话TTS:ChatTTS针对基于对话的任务进行了优化,实现了自然和富有表现力的语音合成。它支持多个扬声器,促进互动对话。 细粒度控制:该模型可以预测和控制细粒度的韵律特征,包括笑声、停顿和感叹词。 更好的韵律:ChatTTS在韵律方面超越了大多数开源TTS模型。我们提供预训练模型以支持进一步的研究和开发。 主模型使用100000+小时的中英文音频数据进行训练。 HuggingFace上的开源版本是一个40000小时的预训练模型,没有SFT。

2025-01-03

GPT-SoVITS-WebUI

零样本TTS:输入5秒语音样本,体验即时语言到文本的转换。 很少拍摄TTS:只需1分钟的训练数据即可微调模型,以提高语音相似性和真实感。 跨语言支持:使用与训练数据集不同的语言进行推理,目前支持英语、日语、韩语、粤语和中文。 WebUI工具:集成工具包括语音伴奏分离、自动训练集分割、中文ASR和文本标签,帮助初学者创建训练数据集和GPT/SoVITS模型。 内部有演示视频!

2025-01-03

DigitalPlat FreeDomain – Your Free Domain Awaits!

欢迎来到DigitalPlat FreeDomain,我们相信每个人都应该拥有数字身份。无论您是个人还是组织,我们都提供免费域名,将您的想法变为现实——没有任何附加条件! 使用FreeDomain,您可以自由注册一个唯一的域名,并将其托管在您最喜欢的DNS提供商处,如Cloudflare、Afraid.org的FreeDNS或Hostry。完全自由地上网,让你的钱包保持快乐。 为什么是免费域名? 在DigitalPlat FreeDomain,我们的使命是让网络更容易访问。我们认为,域名的成本不应该阻碍任何人创建网站。我们的目标是让互联网成为一个开放的空间,每个人都可以在网上拥有自己的地方,无论预算如何。 可用域扩展? .US.KG(由于滥用率很高,此域名现在需要批准。您需要批准列表中的电子邮件后缀(如@gmail.com)进行注册,请使用您的GitHub帐户提交问题以供批准。每个经过批准和验证的帐户最多可以享受三个免费域名!)

2025-01-03

OpenHands: Code Less, Make More

欢迎来到OpenHands(前身为OpenDevin),这是一个由人工智能驱动的软件开发代理平台。 OpenHands代理可以做任何人类开发人员可以做的事情:修改代码、运行命令、浏览网页、调用API,是的,甚至可以从StackOverflow复制代码片段。

2025-01-03

5G NB-IoT support NTN 非地面线路(卫星通讯)

5G NB-IoT support NTN 非地面线路(卫星通讯)

2024-10-09

欧拉角、四元数、旋转矩阵,迂回现象,自抗扰控制

基于双通道控制机制的轨迹跟踪->运行DisturbanceRejectionControlBasedonDualChannelControlMechanism.m文件 其余控制器的调用都在main.m文件中;通过改变ControllerSelectFlag来选择要运行哪个控制器。attFlag表示姿态旋转,R为旋转矩阵,Q为四元数 各变量名的命名基本符合latex中或word内置unicode的英文表述,需强调变量名后的1d 2d等分别表示对时间的1阶和2阶导数 显示运行结果->运行Display文件 若要在程序运行时查看结果或者要对程序进行调试,请将DisturbanceRejectionControlBasedonDualChannelControlMechanism和main中的全局变量debugFlag置为true

2024-10-09

mall项目是一套电商系统,包括前台商城系统及后台管理系统

mall项目是一套电商系统,包括前台商城系统及后台管理系统,基于SpringBoot+MyBatis实现,采用Docker容器化部署。 前台商城系统包含首页门户、商品推荐、商品搜索、商品展示、购物车、订单流程、会员中心、客户服务、帮助中心等模块。 后台管理系统包含商品管理、订单管理、会员管理、促销管理、运营管理、内容管理、统计报表、财务管理、权限管理、设置等模块

2024-10-09

涵盖了 Spring 框架的核心概念和关键功能,包括控制反转(IOC)容器的使用,面向切面编程(AOP)的原理与实践等

涵盖了 Spring 框架的核心概念和关键功能,包括控制反转(IOC)容器的使用,面向切面编程(AOP)的原理与实践,事务管理的方式与实现,Spring MVC 的流程与控制器工作机制,以及 Spring 中数据访问、安全、Boot 自动配置等方面的深入研究。此外,它还包含了 Spring 事件机制的应用、高级主题如缓存抽象和响应式编程,以及对 Spring 源码的编程风格与设计模式的深入探讨。

2024-10-09

你的YOLO部署神器 TensorRT Plugin、CUDA Kernel、CUDA Graphs三管齐下,享受闪电般的推理速

TensorRT-YOLO 是一个支持 YOLOv3、YOLOv5、YOLOv6、YOLOv7、YOLOv8、YOLOv9、YOLOv10、YOLO11、PP-YOLOE 和 PP-YOLOE+ 的推理加速项目,使用 NVIDIA TensorRT 进行优化。项目不仅集成了 TensorRT 插件以增强后处理效果,还使用了 CUDA 核函数以及 CUDA 图来加速推理。TensorRT-YOLO 提供了 C++ 和 Python 推理的支持,旨在提供快速而优化的目标检测解决方案。

2024-10-09

青梧字幕是一款基于whisper的AI字幕提取工具

青梧字幕AI文字提取程序底层使用的是C++版本的 whisper.cpp,前端界面使用 Electron + vite + typescript ,青梧字幕是完全本地化的程序,除了第三方翻译过程外不需要联网,所有数据存于本地,数据库使用的是 sqlite。

2024-10-09

基于大语言模型和 RAG 的知识库问答系统 开箱即用、模型中立、灵活编排,支持快速嵌入到第三方业务系统

MaxKB = Max Knowledge Base,是一款基于大语言模型和 RAG 的开源知识库问答系统,广泛应用于企业内部知识库、客户服务、学术研究与教育等场景。 开箱即用:支持直接上传文档 / 自动爬取在线文档,支持文本自动拆分、向量化和 RAG(检索增强生成),有效减少大模型幻觉,智能问答交互体验好; 模型中立:支持对接各种大模型,包括本地私有大模型(Llama 3 / Qwen 2 等)、国内公共大模型(通义千问 / 腾讯混元 / 字节豆包 / 百度千帆 / 智谱 AI / Kimi 等)和国外公共大模型(OpenAI / Claude / Gemini 等); 灵活编排:内置强大的工作流引擎和函数库,支持编排 AI 工作过程,满足复杂业务场景下的需求; 无缝嵌入:支持零编码快速嵌入到第三方业务系统,让已有系统快速拥有智能问答能力,提高用户满意度。

2024-10-09

网络联机游戏解决方案-Unity制作的联机赛车游戏

网络联机游戏解决方案---Unity制作的联机赛车游戏,服务端为SpringBoot + Mybatis Plus;后台为Vue + Element;游戏端采用QFramework框架,Addressable+HybridCLR实现热更新,支持KCP和WebSocket网络 Crazy Car是一款联机赛车游戏,她的整体架构为:QFramework & Addressable & HybridCLR(游戏端) + Spring Boot & Mybatis(服务端) + KCP / WebSocket (网络) + Vue & Element(后台),借助于此架构,开发者只要稍作修改就可完成一款定制化的网络联机游戏。 主要提供的演示功能有:登录注册、热更头像与装备、计时赛、双人比赛、版本控制(后台)、用户信息管理(后台)等功能。

2024-10-09

使用小波变换对图像进行处理,包括图像融合、图像降噪、图像压缩和图像隐藏

该程序基于MATLAB R2018b编写,具备GUI界面(基于GUIDE环境)。程序使用小波变换对图像进行处理,包括图像融合、图像降噪、图像压缩和图像隐藏。程序提供图片测试素材,可参照素材内容自行制作其他图片素材。目前程序尚不完善,有待进一步改进。感谢你的关注!兼容性:未经过严格测试,但编写时尽量使用旧函数,以尽力保证在旧版MATLAB上可以运行。

2024-10-09

用于多波长偏振拉曼激光雷达网络(PollyNET)的NRT激光雷达数据处理程序

此存储库包含用于自动处理和可视化PollyNET数据的matlab代码。该网络由世界各地的新型多波长拉曼偏振激光雷达组成,如以色列海法、中国北京和智利蓬塔阿雷纳斯。激光雷达系统在过去30年中一直在维护和更新。它可以监测大气中微小的漂浮颗粒和水蒸气。对于最先进的版本PollyXT,它有12个频道,包括8个远距离频道和4个近距离频道。如果仔细校准,它可以提供3β+2α+2S信息,也可以提供有关水蒸气混合比分布的信息。随着PollyNET的发展,数据量急剧增加,实时数据流可达~GB。因此,自动处理程序对于从激光雷达记录的激光雷达中同时翻译气溶胶分布、输送和气溶胶云相互作用的信息至关重要。该存储库中的程序可以自动校准激光雷达去极化、总和水汽通道,检索气溶胶密集特性的1小时平均无云剖面,并使用气溶胶目标分类算法对气溶胶组进行分类。

2024-10-08

秋招岗位表日更,目前已经更新上千岗位,包含国企,央企,私企,中大厂,外企等等

2024年9月25日秋招表格更新56家:华硕、味全、民生保险、北方工业、国家电投、云南信托、清华同衡、阿里健康、南方电网、福特中国、卡夫亨氏、 中金公司、东风汽车、光大证券、箭牌家居、中国石化石油工程技术研究院、华润电力、豫园股份、东阿阿胶、上海机场、五羊本田、太古地产等

2024-09-25

C++与C的基础知识,内存,面向对象,C++11特性,STL 进程与线程,计算机网络

1.全局变量和局部变量的区别 2.静态成员函数与普通成员函数的区别? 3.为什么静态成员函数不能访问非静态成员? 4.静态变量什么时候初始化? 5.int main(int argc, char \** argv)函数中,参数argc和argv分别代表什么意思? 6.static关键字 7.const关键字 8.const 和 #define的区别 9.extern关键字 10.#include<> 和 #include" "的区别 12.头文件#ifndef/#define/#endif的作用 15.一个变量可以const可以是volatile类型吗? 16.sizeof与strlen的区别 17.常见的变量定义 18.数组名与指针的区别 19.结构体和共用体的区别 20.简述C++有几种传值方式之间的区别 21.char和int之间的转换 一个文件,共100作用道,完全可以覆盖大部分面试

2024-09-25

络石机械臂动力学相关算法以及仿真

通过牛顿-欧拉方法建立机器人动力学模型。将机器人动力学模型线性化,得到回归方程。应用QR分解以获得最小回归。将最小参数集Pmin转换为标准集。验证观测值和基于NE的估计之间的误差。推导机器人动力学方程项。

2024-09-25

GNSS和INS深组合的尝试,在GNSS-SDR和PSINS基础上组合得到

GNSS和INS深组合的尝试,在GNSS_SDR和PSINS基础上组合得到

2024-09-25

FMOT的matlab基础开发版本

FMOT的matlab基础开发版本,目前主要功能是simple和piso算法的实现。 可以新建立一个untitled.m,然后把test中的.mlx内容复制到新的untitled.m中,调试更方便。 方程构建和组装的风格是参考OpenFOAM的方式,希望能对OF的初学者有一定的帮助。 算子离散的实现是采用全向量化的方式进行组装,需要一定的基础来理解。 当前大部分封装函数具有帮助说明,可右键点击查看。

2024-09-25

课程论文:序列模式挖掘相关研究

序列模式挖掘相关研究

2024-09-25

模糊小波神经网络的Matlab实现以及目标威胁评估

运行文件为fwnn.m,语言为Matlab语言,实现了对于五个影响因素下的目标威胁度(或攻击优先级)评估,以RoboMaster为例讲解。 填写样本集.xlsx,转化为Dat文件,在FWNN中读入并训练,接着读取测试集.dat数据并进行测试。

2024-09-25

用1843AOPEVM生成点云 初步验证应该是对的,附赠数据一枚

用1843AOPEVM生成点云 初步验证应该是对的,附赠数据一枚 如標題所示,就是個生成點雲的,用FFT測角做的。 2023年5月25:准备加入新函数来对抗强地面干扰。 目前是从数据级上来消除强地面干扰:将会想办法加入注释说明作用 2023年7月8日:准备加入成像部分,新函数在论文发布后会提交给Github 2023年11月24日:准备加入压缩感知成像部分,论文已接受。 2024年6月5日:注意:EKF3需要修正 不要使用位置差对速度进行估计(易发生重大错误估计问题)

2024-09-25

华为杯研究生数学建模竞赛:历年(2017-2022)来优化类代码

分享华为杯数学建模相关算法 能力有限,只上传会的代码 使用版本:matlabR2021a(注意低版本的中文注释可能会存在乱码,可复制github网页版上的代码)

2024-09-25

有限元方法的 matlab 实现,为了追求清晰通用,将会大大牺牲程序的效率

一个简单通用易上手的有限元 matlab 实现 . 本项目发起的原因: 一个兼容所有的有限元程序包很复杂 有限元方法的基本原理是通用的 作为一名计算数学专业的学生,希望为科学计算减少技术壁垒 本项目的实现来自于何晓明老师的授课,通过何老师的授课我学会了一点有限元,非常感谢他。 致谢中列出了一些我认为有用的常用资源。

2024-09-25

EM3DVP:一个用于三维地电磁建模和反演的可视化软件包

EM3DVP是一个Matlab脚本包。其主要目标是为EM方法的用户提供一个易于使用且(希望)全面的GUI,为3D反演代码准备输入模型、数据和参数文件,以及一个绘制结果模型和响应的界面。请注意,这显然仅适用于结构化网格。

2024-09-25

基于OpenBCI(Bciduino)完成的SSVEP项目,包括刺激器、信号实时传输、以及基于FFT的脑电信号分类

此项目由中北大学信息与通信工程学院信号分析与系统仿真实验室创建 此项目是基于OpenBCI(Bciduino)完成的SSVEP项目,包括以下部分程序(均为Matlab代码) 基于Matlab Psychtoolbox3的闪烁刺激器 基于BCIduino放大器和LSL的信号实时传输 基于Matlab的脑电信号预处理 基于频谱分析的SSVEP分类 利用分类结果通过笔记本自带蓝牙去控制蓝牙小车运动 利用分类结果实现脑控打字

2024-09-25

广义SEIR流行病模型(拟合和计算)

数值实现了具有七个状态的广义SEIR模型。除了依赖于函数“lsqcurvfit”的拟合之外,实现都是从头开始的。 此Matlab实现还包括与参考文献的一些主要差异。其中包括死亡率和恢复率的表达,这是时间的分析和经验函数。这种时间依赖性背后的想法是,随着时间的增加,死亡率和恢复率应该收敛到一个恒定值。如果死亡率保持不变,死亡人数可能会被高估。出生和自然死亡在这里没有建模。这意味着总人口,包括死亡病例数,保持不变。

2024-09-25

多任务优化平台(MToP):一个用于进化多任务的MATLAB优化平台

我们介绍了用于进化多任务处理的多任务优化平台MToP: 40+用于多任务优化的多任务进化算法 40+可以处理多任务优化问题的单任务进化算法 150+具有实际应用的多任务最优化问题案例 150+经典单任务优化基准问题 20+涵盖单目标和多目标优化的性能指标 MToP是一个用户友好的工具,具有图形用户界面,便于分析结果、导出数据和绘制示意图。更重要的是,MToP是可扩展的,允许用户开发新算法并定义新问题。

2024-09-25

二维和三维非结构化简单网格上自适应有限元方法

iFEM是一个MATLAB软件包,包含用于二维和三维非结构化简单网格上自适应有限元方法主要构建块的鲁棒、高效和易于遵循的代码。

2024-09-10

Matlab中基于卡尔曼滤波器的电池荷电状态估计

这个小项目来自于我大学毕业设计的仿真模拟部分,目的是估计锂电池的荷电状态(SOC)。主要完成了扩展卡尔曼滤波(EKF)的实验、参数辨识和仿真。完成无迹卡尔曼滤波(UKF)仿真需要感谢我的朋友顾的贡献。BBDST的工作环境也得益于我的师兄蒋的帮助。

2024-09-10

基于深度学习的图像融合综述

DRMF:通过可组合扩散先验进行抗退化多模态图像融合 多模图像融合(Multi-Modal Image Fusion) 红外和可见光图像融合(Infrared and visible image fusion) 医学图像融合(Medical image fusion) 数字摄影图像融合(Digital Photography Image Fusion) 多曝光图像融合(Multi-exposure image fusion) 多聚焦图像融合(Multi-focus image fusion) 遥感影像融合(Remote Sensing Image Fusion) 全色图像锐化(Pansharpening) 通用图像融合框架(General Image Fusion Framerwork) 综述(Survey) 数据集(Dataset) 评估指标(Evaluation Metric) 通用评估指标(General evaluation metric) 遥感影像融合评估指标

2024-09-04

对抗鲁棒性工具箱(ART)-机器学习安全Python库-规避、中毒、提取、推理-红蓝团队

对抗性鲁棒性工具集(ART)是用于机器学习安全性的Python库。ART 由 Linux Foundation AI & Data Foundation (LF AI & Data)。 ART提供的工具可 帮助开发人员和研究人员针对以下方面捍卫和评估机器学习模型和应用程序: 逃逸,数据污染,模型提取和推断的对抗性威胁。ART支持所有流行的机器学习框架 (TensorFlow,Keras,PyTorch,MXNet,scikit-learn,XGBoost,LightGBM,CatBoost,GPy等),所有数据类型 (图像,表格,音频,视频等)和机器学习任务(分类,物体检测,语音识别, 生成模型,认证等)。

2024-08-20

Low-code development tool based on PaddlePaddle(飞桨低代码开发工具)

PaddleX 3.0 集成了飞桨生态的优势能力,覆盖 7 大场景任务,构建了 16 条模型产线,提供低代码开发模式,助力开发者在多种主流硬件上实现模型全流程开发。 基础模型产线(模型丰富,场景全面): 精选 68 个优质飞桨模型,涵盖图像分类、目标检测、图像分割、OCR、文本图像版面分析、文本图像信息抽取、时序分析任务场景。 特色模型产线(显著提升效率): 提供大小模型结合、大模型半监督学习和多模型融合的高效解决方案。 低门槛开发模式(便捷开发与部署): 提供零代码和低代码两种开发方式。 零代码开发: 用户通过图形界面(GUI)交互式提交后台训练任务,打通在线和离线部署,并支持以 API 形式调用在线服务。 低代码开发: 通过统一的 API 接口实现 16 条模型产线的全流程开发,同时支持用户自定义模型流程串联。 多硬件本地支持(兼容性强): 支持英伟达 GPU、昆仑芯、昇腾和寒武纪等多种硬件,纯离线使用。

2024-08-20

摄取、解析和优化任何数据格式 从文档到多媒体 增强与GenAI框架的兼容性

OmniParse是一个平台,它将任何非结构化数据摄取并解析为针对GenAI(LLM)应用程序优化的结构化、可操作的数据。无论您是处理文档、表格、图像、视频、音频文件还是网页,OmniParse都能使您的数据保持干净、结构化,并为RAG、微调等人工智能应用程序做好准备

2024-08-20

汉字转拼音(pypinyin)

Contents 特性 安装 使用示例 文档 FAQ 拼音有误? 为什么没有 y, w, yu 几个声母? 存在既没有声母也没有韵母的拼音? 如何将某一风格的拼音转换为其他风格的拼音? 如何减少内存占用? 拼音数据 Related Projects 特性 根据词组智能匹配最正确的拼音。 支持多音字。 简单的繁体支持,注音支持,威妥玛拼音支持。 支持多种不同拼音/注音风格。

2024-08-20

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除