- 博客(683)
- 资源 (16)
- 收藏
- 关注
原创 论文解析八: GAN:Generative Adversarial Nets(生成对抗网络)
文章提出了一个新的framework(framework通常是一个比较大的模型)用来估计生成模型,通过对抗的过程,同时会训练两个模型**生成模型G:**用来抓取整个数据的分布(生成模型就是要对整个数据的分布进行建模,使得能够生成各种分布,这里的分布就是指的生成图片、文字或者电影等,在统计学中,整个世界是通过采样不同的分布来得到的,所以如果想要生成东西,就应该抓取整个数据的分布)**辨别模型D:**用来估计样本到底是从真正的数据生成出来的还是来自生成模型生成出来的。
2024-10-23 12:13:53
1195
原创 论文解析七: GNN与GCN(图神经网络)一站式详细讲解
图是用来表示entity(实体)之间的关系实体就是一个点(node,顶点)关系就是一个边(edge)顶点(node)边:顶点之间的关系全局信息:每个顶点、每条边和整个图表示的信息使用向量来标示顶点,边,全局属性顶点(黄色)可以用一个embeding(向量)来表示它里面的属性,一共有六个值,高矮表示值的大小边(蓝色)也可以使用向量来表示,长度可以和顶点不一样,这里使用的是一个长度为8的向量,即边中所有的属性用一个长度为8的向量来表示全局信息(粉色)可以用一个长为5的向量来表示。
2024-10-23 11:14:03
1777
原创 论文解析六:Transformer----Attention Is All You Need---注意力是你所需要的
在主流的序列转录模型里面,主要是依赖于比较复杂的循环或者是卷积神经网络一般是使用encoder和decoder的架构序列转录模型:给定一个序列,然后生成另外一个序列,比如机器翻译在性能最好的模型之中,通常也会在编码器和解码器之间使用注意力机制这篇文章提出了一个新的简单的架构(simple,之前都倾向于写成novel),这个模型就是Transformer仅仅依赖于注意力机制,而没有用之前的循环或者卷积。做了两个机器翻译的实验,显示这个模型在性能上特别好,可以并行度更好然后使用更少的时间来训练。
2024-10-14 10:52:09
879
原创 论文解析五:VGGNet 用于大规模图像识别的深度卷积网络
VGG网络研究了卷积网络深度在大规模的图像识别环境下对准确性的影响。我们的主要贡献是使用非常小的(3×3)卷积滤波器架构对网络深度的增加进行了全面评估,这表明通过将深度推到16-19 加权层可以实现对现有技术配置的显著改进。VGG网络对于其他数据集泛化的很好,在其它数据集上取得了最好的结果。 随着 ConvNets 在计算机视觉领域越来越商品化,为了达到更好的准确性, 已经进行了许多尝试来改进 1.使用了更小的感受野窗口尺寸和第一卷积层更小的步长。
2024-10-14 10:22:11
767
原创 论文解析四:AlexNet 使用深度卷积神经网络进行 ImageNet 分类
表示了我们用了一个深度卷积神经网络来进行图片分类,取得了一个非常好的效果。深度卷积网络由60million个参数,65w个神经元,以及五个卷积层和三个全连接层组成。为了加快训练,用到了GPU加速实现。用了dropout这个正则化方法来减少过拟合。引出ImageNet这个数据集很大很好。对于ImageNet这个很大的模型,我们采用CNN来作为我们的模型。对于CNN计算成本高(容易overfitting+训练不动),我们利用GPU以及高度优化的2D卷积来实现CNN的训练。
2024-10-08 16:34:23
1176
原创 论文解析三: D2-Net 用于联合描述和检测局部特征的可训练CNN
解决在困难的成像条件下寻找可靠的像素级对应的问题。提出一种由单一卷积神经网络发挥双重作用的方法:它同时是一个密集的特征描述符和一个特征检测器。通过将检测推迟到后期阶段,所获得的关键点比基于低层结构早期检测的传统关键点更稳定。我们证明了该模型可以使用从现成的大规模SfM重建中提取的像素对应来训练,而不需要任何进一步的注释。该方法在困难的亚琛昼夜定位数据集和InLoc室内定位基准上都获得了最先进的性能,以及在其他图像匹配和三维重建基准上具有竞争力的性能。
2024-10-08 15:26:44
1334
原创 论文解析二: SuperGlue 同时进行特征匹配以及滤除外点的网络
本文提出了一种能够同时进行特征匹配以及滤除外点的网络。其中特征匹配是通过求解可微分最优化转移问题( optimal transport problem)来解决;本文基于注意力机制提出了一种将2D特征点以及聚合机制,这使得SuperGlue能够同时感知潜在的3D场景以及进行特征匹配。该网络能够在GPU上达到实时,预期能够集成到slam算法中位置如下图 在经典的SLAM框架中,前端进行特征提取,后端进行非线性优化,而。
2024-09-10 12:26:34
1448
原创 论文解析一: SuperPoint 一种自监督网络框架,能够同时提取特征点的位置以及描述子
对于特征点提取部分,网络先将维度( W / 8 , H / 8 , 128 )的特征处理为( W / 8 , H / 8 , 65 )大小,这里的65的含义是特征图的每一个像素表示原图8 × 8 的局部区域加上一个当局部区域不存在特征点时用于输出的Dustbin通道,通过。 对于特征描述子提取部分,同理,我们还是使用encoder层的输出(H,W,128)。,这一层是为了8×8的局部区域内没有特征点时,经过Softmax后64维的特征势必还是会有一个相对较大的值输出,但加入。后就可以避免这个问题。
2024-09-10 11:49:01
1449
原创 24 优化算法
深度学习模型大多是非凸的所以关于凸优化的很多理论无法使用小批量随机梯度下降是最常用的优化算法冲量对梯度做平滑冲量法是一个简单的稳定优化的算法Adam 对梯度做平滑,且对梯度各个维度值做重新调整通过实践发现,Adam 不一定比冲量法准确率高或者是收敛快,但是整体来讲 Adam 是比较稳定的,Adam 对学习率不那么敏感,使得调参相对来讲会更加容易一点范围之中(进行维度上的调整)分母中的 ε 的作用是保证分母不等于零。
2024-08-19 18:33:44
671
原创 23 注意力机制—BERT
在计算机视觉中比较流行,将 ImageNet 或者更大的数据集上预训练好的模型应用到其他任务中,比如小数据的预测、图片分类或者是目标检测。使用预训练好的模型(例如 word2vec 或语言模型)来抽取词、句子的特征。在更换任务之后,还是需要构建新的网络来抓取新任务需要的信息。做迁移学习的时候,一般不更新预训练好的模型。
2024-08-19 18:18:09
279
原创 22 注意力机制—Transformer
和 seq2seq 有点类似,不同之处在于 Transformer 是一个纯使用注意力的编码-解码器编码器和解码器都有 n 个 Transformer 块每个块里使用多头(自)注意力(multi-head attention),基于位置的前馈网络(Positionwise FFN),残差连接和层归一化编码器和解码器中各有一个自注意力,但是在编码器和解码器中传递信息的是一个正常的注意力。
2024-08-13 09:23:06
436
原创 21 注意力机制—自注意力
自注意力池化层将 xi 当作 key ,value query 来对序列抽取特征完全并行、最长序列为 1 、但对长序列计算复杂度高可以完全并行,和 CNN 是一样的,所以计算效率比较高最长序列为 1 ,对于任何一个输出都能够看到整个序列信息,所以这也是为什么当处理的文本比较大、序列比较长的时候,通常会用注意力和自注意力但是问题是对长序列的计算复杂度比较高,这也是一大痛点位置编码在输入中加入位置信息,使得自注意力能够记忆位置信息。
2024-08-13 09:14:22
194
原创 20 注意力机制—注意力机制在seq2seq
Seq2Seq 中通过编码器最后时刻的隐藏状态在编码器和解码器中传递信息注意力机制可以根据解码器 RNN 的输出来匹配到合适的编码器 RNN 的输出来更有效地传递信息在预测词元时,如果不是所有输入词元都是相关的,加入注意力机制能够使 RNN 编码器-解码器有选择地统计输入序列的不同部分(通过将上下文变量视为加性注意力池化的输出来实现)
2024-08-05 09:35:49
111
原创 19 注意力机制
心理学认为人通过随意线索(故意)和不随意线索(无意)选择注意点注意力机制中,通过query(随意线索)和 key(不随意线索)来有偏向性地选择输入,一般可以写作f(x)的 key 和所有的不随意线索的 key 做距离上的计算(α(x,xi),通常称为注意力权重),分别作为所有的 value 的权重这并不是一个新兴的概念,早在 60 年代就已经有非参数的注意力机制了接下来会介绍不同的权重设计。
2024-08-05 09:20:48
187
原创 18现代循环神经网络—seq2seq与束搜索
Seq2Seq 从一个句子生成另一个句子,机器翻译算是其中的一个应用场景Seq2Seq 使用的是编码器-解码器的架构,编码器和解码器都是 RNN将编码器最后时间隐藏状态来初始解码器隐状态来完成信息传递在“编码器-解码器”训练中,强制教学方法将**原始输出序列(而非预测结果)**输入到解码器中BLEU 是一种常用的评估方法,它通过测量预测序列和标签序列之间的 n 元语法的匹配度来衡量生成预测序列的好坏序列搜索策略包括贪心搜索、穷举搜索和束搜索。
2024-07-29 12:00:41
223
原创 17现代循环神经网络—机器翻译,编码器-解码器
机器翻译指的是将文本序列从一种语言自动翻译成另外一种语言使用单词级词元化时的词表大小,将明显大于使用字符级词元化时的词表大小。为了缓解这一问题,可以通过将低频次元视为相同的未知词元来解决通过截断和填充文本序列,可以保证所有的文本序列都具有相同的长度,便于以小批量的方式进行加载使用编码器-解码器架构的模型,编码器负责表示输入,解码器负责输出“编码器-解码器”架构可以将长度可变的序列作为输入和输出,因此适用于机器翻译等序列转换问题。
2024-07-29 11:56:19
127
原创 16现代循环神经网络—深度循环与双向循环
深度循环神经网络使用多个隐藏层来获得更多的非线性性GRU、RNN、LSTM 在结构上都是相同的,只是隐状态 H 的计算方式有区别,所以它们加深神经网络的原理都是相同的在深度循环神经网络中,隐状态的信息被传递到当前层的下一时间步和下一层的当前时间步存在许多不同风格的深度循环神经网络,如长短期记忆网络、门控循环单元或经典循环神经网络深度循环神经网络需要大量的调参(如学习率和修剪)来确保合适的收敛,模型的初始化也需要谨慎双向循环神经网络通过反向更新的隐藏层来利用方向时间信息。
2024-07-22 16:21:02
646
原创 15现代循环神经网络—GRU与LSTM
GRU 中引入了两个额外的门,每个门可以学习的参数和 RNN 一样多,整个可学习的权重数量是 RNN 的三倍Rt 和 Zt 都是控制单元,用来输出取值为 0~1 的数值Rt 用来衡量在更新新的隐藏状态的时候,要用到多少过去隐藏状态的信息Zt 用来衡量在更新新的隐藏状态的时候,需要用到多少当前Xt相关的信息当 Zt 全为 0 , Rt 全为 1 时,等价于 RNN当 Zt 全为 1 时,直接忽略掉当前 XtGRU 通过引入 Rt 和 Zt ,从而能够在各种极端情况之间进行调整。
2024-07-22 16:13:21
456
1
原创 14循环神经网络—RNN
对隐藏状态使用循环计算的神经网络称为循环神经网络(RNN),循环神经网络的输出取决于当下输入和前一时间的隐变量循环神经网络的隐藏状态可以捕获当前时间步序列的历史信息隐变量是用来存储历史信息和下一个历史信息的转换规则,所以在拿到过去的输入和当前的隐藏状态就能够预测当前的输出Whh 拥有一定的时序预测目的应用到语言模型中时,循环神经网络根据当前词预测下一次时刻词根据当前的输入更新当前时刻的隐藏状态就能够预测下一个时刻的输出RNN 是一个隐变量模型,隐变量是一个向量。
2024-07-16 10:37:45
277
原创 13 循环神经网络—序列模型,语言模型
时序模型中,当前数据跟之前观察到的数据相关自回归模型使用自身过去数据来预测未来马尔科夫模型假设当前只跟当前少数数据相关,每次都使用固定长度的过去信息来预测现在,从而简化模型潜变量模型使用潜变量来概括历史信息,使得模型拆分成两块:一块是根据现在观测到的数据来更新潜变量;另一块是根据更新后的潜变量和过去的数据来更新将来要观测到的数据内插法(在现有观测值之间进行估计)和外推法(对超出已知观测范围进行预测)在实践的难度上差别很大。
2024-07-16 10:12:59
1525
原创 12计算机视觉—全连接卷积与迁移学习(风格迁移)
全卷积网络首先使用卷积神经网络抽取图像特征,然后通过 1 * 1 卷积层将通道数变换为类别个数,最后通过转置卷积层将特征图的高和宽变换为输入图像的尺寸在全卷积网络中,可以将转置卷积层初始化为双线性插值的上采样样式迁移常用的损失函数由 3 部分组成:内容损失、样式损失和全变分损失内容损失使合成图片与内容图片在内容特征上接近样式损失使合成图片与样式图片在样式特征上接近全变分损失有助于减少合成图片中的噪点。
2024-07-10 10:56:56
264
原创 11计算机视觉—语义分割与转置卷积
与目标检测不同,语义分割可以识别并理解图像中每一个像素的内容:其语义区域的标注和预测是像素级的。与目标检测相比,语义分割标注的像素级的边框显然更加精细。然而如果输入和输出图像的空间维度相同,在以像素级分类的语义分割中将会很方便。 为了实现这一点,尤其是在空间维度被卷积神经网络层缩小后,我们可以使用另一种类型的卷积神经网络层,它可以增加上采样中间层特征图的空间维度。在标签图像中,白色和黑色分别表示边框和背景,而其他颜色则对应不同的类别。 通过上面定义的两个常量,我们可以方便地查找标签中每个像素的类索引。
2024-07-10 10:42:00
208
原创 10计算机视觉—物体检测算法
R-CNN是最早,也是最有名的一类基于锚框和CNN的目标检测算法Fast/Faster R-CNN持续提升性能Faster R-CNN和Mask R-CNN是在最高精度场景下的常用算法SSD通过单神经网络来检测以每个像素为中心的产生多个锚框在多段的输出上进行多尺度的检测。
2024-07-03 09:57:32
270
原创 9.计算机视觉—目标检测
物体检测识别图片里的多个物体的类别和位置位置通常用边缘框表示一类目标检测算法基于锚框来检测首先生成大量锚框,并赋予标号,每个锚框作为一个样本进行训练在预测时,使用NMS来去除冗余的预测。
2024-07-03 09:42:46
319
原创 8.计算机视觉—增广和迁移
微调通过使用在大数据上得到的预训练好的模型来初始化模型权重来完成提升精度预训练模型质量很重要微调通常速度更快,经度更高。
2024-06-27 09:58:31
334
原创 7.计算机视觉—硬件和训练
一台机器可以安装多个GPU在训练和预测时,我们将一个小批量计算切分到多个GPU上来达到加速目的常用切分方案有数据并行模型并行通道并行(数据+模型并行)当一个模型能用单卡计算时,通常使用数据并行拓展到多卡上模型并行则用在超大模型上。
2024-06-27 09:32:01
176
原创 6.深度卷积神经网络
AlexNet是更大更深的LeNet,10倍参数个数,260倍计算复杂度新进入了Dropout,ReLu,最大池化层和数据增强AlexNet赢下2012ImageNet竞赛后,标志这新的一轮神经网络热潮的开始VGG使用可重复使用的卷积块来构建深度卷积神经网络不同的卷积块个数和超参数可以得到不同复杂的变种NiN块在卷积层后 加两个1 * 1卷积层后者对每个像素增加了非线性NiN使用全集平均池化层来代替VGG和AlexNet中的全连接层不容易过拟合,更少的参数个数。
2024-06-18 09:42:13
350
原创 5.卷积神经网络
对全连接层使用平移不变性和局部性得到卷积层卷积层将输入和核矩阵进行交叉相关计算,加上偏移后得到输出核矩阵和偏移是可学习的参数核矩阵的大小是超参数填充和步幅是卷积层的超参数填充在周围添加额外的行/列,来控制输出形状的减少量步幅是每次滑动核窗口时的行/列的步长,可以成倍的减少输出形状核大小最为关键,填充一般是默认核减1,步幅看需求输出通道数是卷积层的超参数每个输入通道有独立的二维卷积核,所有通道结果相加得到一个输出通道结果每个输出通道有独立的三维卷积核。
2024-06-18 09:10:11
457
原创 4.深度学习计算
构造一个没有任何参数的自定义层#向该层提供一些数据#将层作为组件合并到构建更复杂的模型中#定义带参数的图层def __init__(self, in_units, units):#in_units输入参数 units输出参数linear = torch.matmul(X, self.weight.data) + self.bias.data#matmul函数执行矩阵乘法#使用带参数的图层构建模型。
2024-06-15 09:44:05
74
原创 3.多层感知机
感知机是一个二分类模型,是最早的AI模型之一它的求解算法等价于使用批量大小为1的梯度下降 批量大小为1:指在训练神经网络时,每次更新参数时只使用单个样本的数据它不能拟合XOR函数,导致第一次AI寒冬多层感知机使用隐藏层和激活函数来得到非线性模型常用激活函数是Sigmoid,Tanh,ReLu使用Softmax来处理多类分类超参数为隐藏层数和各个隐藏层大小训练数据集:训练模型参数验证数据集:选择模型超参数非大数据集上通常使用K-则交叉验证。
2024-06-15 09:29:01
322
原创 2.线性神经网络
线性回归是对N维输入的加权,外加偏差使用平方损失来衡量预测值和真实值的差异线性回归有显示解,一般都网络都是非线性的没有显示解线性回归可以看做是单层神经网络梯度下降通过不断沿着反梯度方向更新参数求解小批量随机梯度下降是深度学习默认的求解算法两个重要的超参数是批量大小和学习率#初始化模型参数# PyTorch不会隐式(自动)地调整输入的形状。因此,#创建了一个简单的神经网络模型 net。
2024-06-13 11:28:52
348
原创 1.动手学习深度学习课程安排及深度学习数学基础
首先,我们导入torch,注意,虽然它被称为pytorch,但我们应该导入torch而不是pytorch。矩阵相当于一个扭曲空间,把下图中的蓝线和绿线,扭曲到不同方向和长度。
2024-06-13 10:51:15
194
原创 我的创作纪念日——我就想获得一个纪念勋章,,嘿嘿嘿
提示:你过去写得最好的一段代码是什么?提示:当前创作和你的工作、学习是什么样的关系。提示:可以和大家分享最初成为创作者的初心。提示:在创作的过程中都有哪些收获。提示:职业规划、创作规划等。
2024-05-19 11:46:18
198
原创 7个精选的矢量数据库和搜索引擎项目
向量数据库是一种用于存储、检索和分析向量的数据库。在图片搜索、语音搜索等应用中,不是直接存储和对比原始数据,而是使用向量表示,通常为256/512个浮点数数组。它提供标准的SQL访问接口,同时支持高效的数据组织、检索和分析能力,包括传统数据库管理结构化数据的能力。向量数据库解决两个主要问题:高效的检索和高效的分析。检索方面主要用于图片搜索,例如人脸、人体、车辆、商品图片等检索,甚至人脸支付。分析方面广泛应用于安全领域,如人脸撞库,通过对比相似案发现场周边的人像等。
2023-12-16 20:12:20
1140
1
原创 Redis-Stack项目
推荐理由:RedisGraph是一个基于Redis的图数据库扩展,它使用图结构来存储和查询数据,提供了快速的图遍历和图分析功能。推荐理由:RedisBloom是一个在Redis上实现的布隆过滤器和其他数据结构的扩展,可以提供高效的元素查找和去重功能,适用于大规模数据集的快速筛选和过滤,具有较低的误判率和高效的存储利用率。项目标签:[搜索模型] [内存数据库] [NoSQL] [搜索引擎]项目标签:[搜索模型] [内存数据库] [NoSQL]项目标签:[图模型] [内存数据库] [NoSQL]
2023-12-16 08:00:00
232
原创 7个计算机视觉领域的项目精选
它提供了方便的方式帮助用户在视频中追踪和分割感兴趣的对象,为视频分析和处理提供了实用的工具。推荐理由:这个项目可以自动分割和识别图像、视频和音频中的任何对象,无需深度学习专业知识,是一个非常实用的图像处理工具。推荐理由:这个创意动画工具使用对象检测模型、姿态估计模型和基于图像处理的分割方法,可以快速创建数字版的图画,并通过传统的计算机图形技术进行变形和制作成动画。推荐理由:SEEM允许用户使用不同类型的提示轻松分割图像,包括视觉提示(点,标记,框,涂鸦和图像段)和语言提示(文本和音频)等。
2023-12-14 16:10:55
1567
原创 ChatGPT热门项目
推荐理由:这是由开发者Significant Gravitas推出的项目,可根据你设置的目标,使用GPT-4自动帮你完成所有的任务。推荐理由:开源双语对话语言模型,一个基于大型预训练语言模型 GPT 的对话生成模型,用 GPT-2 进行微调,支持中文和英文,让机器变得更有智能。推荐理由:一个增强视觉语言理解的工具,基于先进的大型语言模型。推荐理由:一个开源的聊天机器人生态系统,它在大量辅助数据上进行了训练,具有强大的对话生成能力。推荐理由:用于学术研究的GPT模型,可生成论文、摘要和对话等。
2023-12-14 15:25:49
542
1
原创 回味童年经典游戏的项目
推荐理由:吃豆人(Pac-Man)是一个比较经典的游戏,最早由同名街机游戏移植至Atari 2600平台的游戏,最早由南梦宫公司于1980年在街机上推出,后由雅达利公司于1982年3月中旬发售Atari 2600版。在线试玩:http://martindrapeau.github.io/backbone-game-engine/super-mario-bros/index.html。在线试玩网址:https://battle-city.js.org/#/stage/1。主要语言:JavaScript。
2023-12-10 22:18:07
141
原创 为什么Git的教程都那么繁杂?
作为产品设计,为了让“单一的操作出现单一的结果“,就必须对上述情况进行简化,例如 ”要删除云端的文件,必须先满足所有设备对 A.jpeg 的共识是一致的“,从而确认 “删除云端“ 的操作,不会因为其他设备的后续同步带来歧义。即使只有1个设备,也按多设备的方案去处理。只不过,绝大部分人没有深度思考 + 拆分的能力,而觉得 “实时同步“ 很简单,即 “你按我脑海中的想法去做,我想留就留,我想删就删,如果我想错了,你还得救回来“。对用户而言,一个单一的 “删除云端文件操作”,根据不同的情形,它的结果是不单一的。
2023-11-22 09:39:46
128
Ladybird真正独立的网络浏览器
2025-01-07
互联网操作系统!可自行托管
2025-01-07
用于将文件和办公文档转换为Markdown的Python工具
2025-01-07
The official Meta Llama 3 GitHub site
2025-01-03
Docker容器中的Windows
2025-01-03
ChatTTS是一种专门为LLM助手等对话场景设计的文本到语音模型
2025-01-03
GPT-SoVITS-WebUI
2025-01-03
DigitalPlat FreeDomain – Your Free Domain Awaits!
2025-01-03
OpenHands: Code Less, Make More
2025-01-03
欧拉角、四元数、旋转矩阵,迂回现象,自抗扰控制
2024-10-09
mall项目是一套电商系统,包括前台商城系统及后台管理系统
2024-10-09
涵盖了 Spring 框架的核心概念和关键功能,包括控制反转(IOC)容器的使用,面向切面编程(AOP)的原理与实践等
2024-10-09
你的YOLO部署神器 TensorRT Plugin、CUDA Kernel、CUDA Graphs三管齐下,享受闪电般的推理速
2024-10-09
青梧字幕是一款基于whisper的AI字幕提取工具
2024-10-09
基于大语言模型和 RAG 的知识库问答系统 开箱即用、模型中立、灵活编排,支持快速嵌入到第三方业务系统
2024-10-09
网络联机游戏解决方案-Unity制作的联机赛车游戏
2024-10-09
使用小波变换对图像进行处理,包括图像融合、图像降噪、图像压缩和图像隐藏
2024-10-09
用于多波长偏振拉曼激光雷达网络(PollyNET)的NRT激光雷达数据处理程序
2024-10-08
秋招岗位表日更,目前已经更新上千岗位,包含国企,央企,私企,中大厂,外企等等
2024-09-25
C++与C的基础知识,内存,面向对象,C++11特性,STL 进程与线程,计算机网络
2024-09-25
络石机械臂动力学相关算法以及仿真
2024-09-25
FMOT的matlab基础开发版本
2024-09-25
模糊小波神经网络的Matlab实现以及目标威胁评估
2024-09-25
用1843AOPEVM生成点云 初步验证应该是对的,附赠数据一枚
2024-09-25
华为杯研究生数学建模竞赛:历年(2017-2022)来优化类代码
2024-09-25
有限元方法的 matlab 实现,为了追求清晰通用,将会大大牺牲程序的效率
2024-09-25
EM3DVP:一个用于三维地电磁建模和反演的可视化软件包
2024-09-25
基于OpenBCI(Bciduino)完成的SSVEP项目,包括刺激器、信号实时传输、以及基于FFT的脑电信号分类
2024-09-25
广义SEIR流行病模型(拟合和计算)
2024-09-25
多任务优化平台(MToP):一个用于进化多任务的MATLAB优化平台
2024-09-25
Matlab中基于卡尔曼滤波器的电池荷电状态估计
2024-09-10
基于深度学习的图像融合综述
2024-09-04
对抗鲁棒性工具箱(ART)-机器学习安全Python库-规避、中毒、提取、推理-红蓝团队
2024-08-20
Low-code development tool based on PaddlePaddle(飞桨低代码开发工具)
2024-08-20
摄取、解析和优化任何数据格式 从文档到多媒体 增强与GenAI框架的兼容性
2024-08-20
汉字转拼音(pypinyin)
2024-08-20
研0卑微 主要方向是机器学习-计算机视觉,求一个入门学习路线,前期应该看哪些入门的论文
2022-09-21
TA创建的收藏夹 TA关注的收藏夹
TA关注的人