[译]sklearn.model_selection.GridSearchCV

  • sklearn.model_selection.GridSearchCV

    class sklearn.model_selection.GridSearchCV(estimator, param_grid, scoring=None, n_jobs=None, iid=’warn’, refit=True, cv=’warn’, verbose=0, pre_dispatch=‘2*n_jobs’, error_score=’raise-deprecating’, return_train_score=False)

    对评估器的指定参数进行详细搜索。

    重要参数拟合并预测。

    GridSearchCV执行一个’fit’和一个’score’方法,也执行’预测predict’,‘predict_proba’,‘decision_function’, “transform”, “inverse_transform” ,如果他们在所用的estimator中使用的话。

    运用这些方法的estimator的参数通过一个参数网格今昔你个网格搜索交叉验证。

    更多内容见:

  • Parameters

    Parameters数据类型意义
    estimatorestimator objectestimator都需要提供score函数
    param_griddict or list of dictionaries参数名作为keys
    scoringstring, callable, list/tuple, dict or None, default: None评估预测结果。为了评估多个指标,给出一个list或dict
    n_jobsint or None, optional (default=None)并行数目,None是1个。
    -1是运行所有处理器
    pre_dispatchint, or string, optional并行计算中控制分发的工作数目
    iidboolean, default=’warn’True:返回交叉平均得分
    cvint, cross-validation generator or an iterable, optional确定交叉验证分配策略
    refitboolean, string, or callable, default=True在全部数据集上用找到的最佳参数组合重新拟合评估器
    verboseinteger控制冗长信息,数值越高信息越多
    error_score‘raise’ or numeric
    return_train_scoreboolean, default=False
  • Attributes

    Attributes数据类型意义
    cv_results_dict of numpy (masked) ndarrays字典的keys作为column头,values作为columns
    best_estimator_estimator or dict搜索到的验证集上得分最好的Estimator
    best_score_floatbest_estimator的平均交叉验证得分
  • Methods

    Methods意义
    decision_function(self, X)Call decision_function on the estimator with the best found parameters.
    fit(self, X[, y, groups])Run fit with all sets of parameters.
    get_params(self[, deep])Get parameters for this estimator.
    inverse_transform(self, Xt)Call inverse_transform on the estimator with the best found params.
    predict(self, X)Call predict on the estimator with the best found parameters.
    predict_log_proba(self, X)Call predict_log_proba on the estimator with the best found parameters.
    predict_proba(self, X)Call predict_proba on the estimator with the best found parameters.
    score(self, X[, y])Returns the score on the given data, if the estimator has been refit.
    set_params(self, **params)Set the parameters of this estimator.
    transform(self, X)Call transform on the estimator with the best found parameters.

这篇文章翻译的更好:《使用GridSearchCV进行网格搜索

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值