声明:本文以数学建模清风老师的课程与课件为基础并且借鉴了一位同学的博客,加上个人理解最终写成,如果文章中有错误的地方欢迎各位在评论区指正。
一.引子
1.数学归纳法:同高中知识
2.秃子悖论:秃子悖论
这俩个例子都是类似于“量变引起质变”的道理,而在数学中我们把这类问题的性质叫做“模糊性”,在生活中我们也经常能遇到一些模糊的概念,比如年轻、帅、很少很多…
二.基本知识与概念
模糊综合评价法是一种基于模糊数学的综合评价方法。该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。——来自百度百科
1.模糊集合:
模糊集合是用来描述模糊性概念的集合,它与经典集合(高中课本中所学到的集合)的区别之一是,模糊集合不具备确定性,例如35岁,我们既可以认为它“年轻”,也可以认为它是“不年轻”。
而在数学中,我们用隶属函数对模糊集合进行描述。隶属函数是隶属度对各个元素的函数,定义域是我们所研究的元素,函数值就是隶属度。隶属度的范围是[0,1],其值越大,就代表越属于这个集合。
2.模糊集合的分类:
偏小型:年轻、小、冷
中间型:中年、中、暖
偏大型:老年、大、热
三.隶属函数的三种确定方法
1.模糊统计法:(需要去做统计、发问卷调查,数模比赛使用很少)
找多个人对同一个模糊概念进行描述。
2.借助已有的客观尺度:(需要有合适的指标,并且能够收集到数据)
对于某些模糊集合,我们可以用已经有的指标去作为元素的隶属度。例如对于“小康家庭”这个模糊集合,我们想确定100户家庭的隶属度,那就可以用“恩格尔系数”衡量相应的隶属度。恩格尔系数=食品支出总额/家庭总支出,家庭越接近小康水平,其恩格尔系数应该越低,那“恩格尔系数”就越大,我们便可以把“恩格尔系数”看作家庭相对于“小康家庭”的隶属度。
论域 | 模糊集 | 隶属度 |
---|---|---|
设备 | 设备完好 | 设备完好率 |
产品 | 质量稳定 | 正品率 |
家庭 | 小康家庭 | 恩格尔系数 |
3.指派法(主观性较强但是简单方便)
根据问题性质直接套用某些分布作为隶属函数
其中,我们对梯形分布使用较多,并且使用梯形分布最简单。 可以通过下面一道例题来进一步理解。
例:已知某一天的 S O 2 SO_{2} SO2 的浓度为0.07mg/ m 3 m^3 m3,大气污染物中关于 S O 2 SO_{2} SO2 的评价标准如下表,试确定 S O 2 SO_{2} SO2 在每一个等级中的隶属度。
Ⅰ | Ⅱ | Ⅲ | Ⅳ |
---|---|---|---|
0.05 | 0.15 | 0.25 | 0.50 |
解:根据 偏向指定值 可将几个等级划分为,I级为偏小型,Ⅱ级和Ⅲ级为中间型,Ⅳ级为偏大型。
定义 A 1 A_{1} A1为Ⅰ级的隶属函数, A 2 A_{2} A2为Ⅱ级的隶属函数, A 3 A_{3} A3为 Ⅲ 级的隶属函数, A 4 A_{4} A4为 Ⅳ 级的隶属函数。
可得如下算术式:
则题目所给“某一天” S O 2 SO_{2} SO2的隶属度为:、
A 1 A_{1} A1(0.07)=0.8, A 2 A_{2} A2(0.07)=0.2, A 3 A_{3} A3(0.07)=0, A 4 A_{4} A4(0.07)=0
四.应用:模糊综合评价
1.评价问题概述
(1)模糊评价问题是要解决的问题是:
①把论域(感兴趣的研究的对象,如一个班上的50名同学)中的对象(如班上的每一名学生)对应评语集(优良差)中的一个指定的评语 。或者
②将方案作为评语集并选择一个最优的方案。
(2)在模糊综合评价中,我们引入了三个集合:
因素集(评价指标集) U = {u1,u2,…,un}
评语集(评价的结果集) V = {v1,v2,…,vm}
权重集(指标的权重) A = {a1,a2,…,an}
例如,我们在评价一名学生时,可以引入这样的三个集合:
因素集 U = {专业排名,课外实践,志愿服务,竞赛成绩},
评语集 V = {优,良,差},
权重集 A = {0.5,0.1,0.1,0.3}
2. 一级模糊综合评价:
一级模糊综合评价分为以下五个步骤:
①确定因素集
②确定评语集
③确定各因素的权重
④确定模糊综合判断矩阵
⑤综合评判
例题如下:
例一:一级模糊综合评价在人事考核中的应用(见《数学建模算法与应用》P375)
按照上面的分析,我们可以将这个问题分解成下面的五个步骤:
第一步:确定因素集
对员工的表现,需要从多个方面(找出多个评价指标)进行综合评判,如员工的工作业绩、工作态度、沟通能力、政治表现等。所有这些因素构成了评价指标体系集合,即因素集。
记为: U = { u 1 , u 2 , u 3 , u 4 } U = \lbrace u_{1},u_{2},u_{3},u_{4}\rbrace U={
u1,u2,u3,u4}
注:一级模糊评价中,n 往往较小(一般 ≤ 5)且 指标间相关性不强
在本题中我们可以取: U = { 工 作 业 绩 u 1 , 工 作 态 度 u 2 , 沟 通 能 力 u 3 , 政 治 表 现 u 4 } U = \lbrace 工作业绩u_{1},工作态度u_{2},沟通能力u_{3},政治表现u_{4}\rbrace U={
工作业绩u1,工作态度u2,沟通能力u3,政治表现u4}
第二步:确定评语集
由于每个指标的评价值的不同,往往会形成不同的等级。如对工作业绩的评价有好、较好、中等、较差、很差等。由各种不同决断构成的集合称为评语集。
记为: V = { v 1 , v 2 , v 3 , v 4 , v 5 } V = \lbrace v_{1},v_{2},v_{3},v_{4},v_{5}\rbrace V={
v1,v