数学建模:评价决策类——模糊综合评价法

目录

1.引言

2.模糊集合的分类

3.评价问题概述

4.解题步骤

5.举例说明

6.代码实现


1.引言

处理现实的数学模型可分为三大类:

1)确定性数学模型,即模型背景具有确定性,对象之间具有必然关系。

2)随机性数学模型,即模型背景具有随机性和偶然性。

3)模糊性模型,即模型背景及关系具有模糊性,判断的‘不分明性’。

今天我们来介绍下模糊性模型。

2.模糊集合的分类

主要有三类:偏小型、中间型和偏大型,类似于TOPSIS法中的极大型、极小型、中间型、区间型指标。

举个例子来说就是:“年轻”是一个偏小型的模糊集合,岁数越小,隶属度越大,就越“年轻”;“年老”则是一个偏大型的模糊集合,岁数越大,隶属度越大,就越“年老”;而“中年”则是一个中间型集合,岁数只有处在某个中间的范围,隶属度才越大。

然而不管模糊集合是哪一种类型,隶属度越大,属于这个集合的程度也越大

3.评价问题概述

模糊评价问题是要把论域中的对象对应评语集中一个指定的评语,或者将方案作为评语集并选择一个最优方案。
在模糊综合评价中,引入三个集合:
① 因素集(评价指标集):U=\begin{Bmatrix} u_1,u_2,...,u_n \end{Bmatrix}

② 评语集(评语的结果):V=\begin{Bmatrix} v_1,v_2,...,v_n \end{Bmatrix}

③ 权重集(指标的权重):A=\begin{Bmatrix} a_1,a_2,...,a_n \end{Bmatrix}

例如:评价一个学生的表现:

U={专业排名,课外实践,志愿服务,竞赛成绩}

V={优,良,差}

A={0.4,0.2,0.1,0.3}

4.解题步骤

1.一级模糊综合评价:

① 构造判断矩阵R。

② 进行模糊综合评判:B=A·R(即权重·判断矩阵)。

2.多层次模糊综合评价模型(结合后面例题会好理解一些):

① 给出被评价的对象集合:X=\begin{Bmatrix} x_1,x_2,...,x_k \end{Bmatrix}

② 确定因素集(指标体系):U=\begin{Bmatrix} u_1,u_2,...,u_n \end{Bmatrix}
若因素众多,往往将 U=\begin{Bmatrix} u_1,u_2,...,u_n \end{Bmatrix} 按某些属性分成 s 个子集,即 U_i=\begin{Bmatrix} u_{1}^{(i)},u_{2}^{(i)},...,u_{ni}^{(i)} \end{Bmatrix}\ ,i=1,2,...,s

③ 确定评语集:V=\begin{Bmatrix} v_1,v_2,...,v_m \end{Bmatrix} 。

④ 由因素集 U_i 与评语集 V ,可获得一个评价矩阵 R_i 。

⑤ 对每一个 U_i ,分别作出综合决策,B_i=A_i\cdot R_i 。

⑥ 将每一个 U_i 视为一个元素,记 U=\begin{Bmatrix} u_1,u_2,...,u_s \end{Bmatrix} ,可得 U 的单因素判断矩阵 R ,将每个 U_i 作为 U 的一部分,反映了 U 的某种属性,按重要性分配权重 A=(a_1,a_2,...,a_s),由此得到二级模糊综合评价模型为:B=A\cdot R

⑦ 依次类推可以得到多层次模糊综合评价模型。

5.举例说明

例:对某陶瓷厂生产的6种产品的销售前景进行评判。

1)影响评判对象因素集的选取
产品情况、销售能力、市场需求三个方面考虑,根据专家评判法,得到评判对象因素集及子因素组成(如下图),因素后面数据表示权重:

 2)备择集 V={1,2,3,4,5,6} 代表6种不同的陶瓷产品。

3)一级模糊综合评价
通过上图可以看出,“运行费用”下属的三级指标是定量指标,有具体数据,对这些数据进行归一化即可求出各种产品的该指标与总指标的比重,得到单因素隶属度。而其他因素如产品品牌、产品质量等可以通过市场调查,把消费者满意度来作为单因素隶属度。
6种产品的单因素隶属度如下表:

因素产品1产品2产品3产品4产品5产品6
u_11产品品牌0.120.180.170.230.130.17
u_12产品质量0.150.130.180.250.120.17
u_13性价比0.140.130.160.180.200.19
u_14产品款式0.120.140.150.170.190.23
u_15产品包装0.160.120.130.250.180.16
u_21店铺信用度0.130.150.140.180.160.24
u_22售后服务0.120.160.130.170.190.23
u_23运行费用u_231材料费 

0.18

0.14

0.18

0.14

0.13

0.23

u_232运输费用

0.15

0.20

0.15

0.25

0.10

0.15

u_233设备维修费用

0.25

0.12

0.13

0.12

0.18

0.20

u_234设备折旧费用

0.16

0.15

0.21

0.11

0.20

0.17

u_235人员工资

0.23

0.18

0.17

0.16

0.15

0.11

u_236电耗费用

0.19

0.13

0.12

0.12

0.11

0.33

u_237水耗费用

0.17

0.16

0.15

0.08

0.25

0.19

u_24销售人员能力

0.14

0.13

0.15

0.16

0.18

0.24

u_25广告、宣传

0.16

0.15

0.15

0.17

0.18

0.19

u_31行业需求

0.15

0.14

0.13

0.18

0.14

0.26

u_32家庭需求0.160.150.180.140.160.21

由上表可知:影响运行费用的各因素的单因素评价矩阵R_{23}=\begin{bmatrix} 0.18&0.14 & 0.18& 0.14&0.13 &0.23 \\ 0.15& 0.20& 0.15& 0.25& 0.10&0.15 \\ 0.25&0.12 &0.13 &0.12 &0.18 &0.20 \\0.16 &0.15 &0.21 &0.11 &0.20 &0.17 \\0.23 & 0.18& 0.17& 0.16&0.15 &0.11 \\0.19 &0.13 &0.12 &0.12 &0.11 &0.33 \\0.17 & 0.16&0.15 &0.08 &0.25 &0.19 \end{bmatrix}
又已知权重分配 A_{23}=\begin{bmatrix} 0.20 & 0.15 &0.10 & 0.10 & 0.20& 0.15& 0.10 \end{bmatrix} 所以运行费用的一级评判为:B_{23}=A_{23}\cdot R_{23}=\begin{bmatrix} 0.1910 & 0.1565& 0.1595 & 0.1465& 0.1505& 0.1960 \end{bmatrix}

4)二级模糊综合评价
对产品情况、销售能力、市场需求下属的单因素指标进行二级评判,可知:
① 产品情况的二级评判:
R_1=\begin{bmatrix} 0.12 & 0.18 & 0.17& 0.23 & 0.13& 0.17\\ 0.15& 0.13 & 0.18& 0.25 & 0.12&0.17 \\ 0.14& 0.13& 0.16& 0.18 & 0.20& 0.19\\ 0.12& 0.14 & 0.15 &0.17 & 0.19&0.23 \\ 0.16& 0.12 & 0.13 & 0.25 & 0.18 & 0.16 \end{bmatrix}
A_1=\begin{bmatrix} 0.15 & 0.40 & 0.25 & 0.10& 0.10 \end{bmatrix}
所以产品情况的二级评判如下: B_1=A_1\cdot R_1=\begin{bmatrix} 0.1410 &0.1375 & 0.1655 & 0.2215& 0.1545 & 0.1800 \end{bmatrix}
② 销售能力的二级评判:
可将运行费用的一级评判结果作为二级的单因素评价值,即评价矩阵的第三行,如此可以得到:
R_2=\begin{bmatrix} 0.13 & 0.15 & 0.14 & 0.18 & 0.16&0.24 \\ 0.12& 0.16 & 0.13& 0.17 & 0.19 & 0.23\\ 0.1910& 0.1565 & 0.1595 & 0.1465 &0.1505 &0.1960 \\ 0.14&0.13 & 0.15 & 0.16& 0.18&0.24 \\ 0.16& 0.15& 0.15 & 0.17 & 0.18 & 0.19 \end{bmatrix}A_2=\begin{bmatrix} 0.20 &0.15 & 0.25 & 0.25 & 0.15 \end{bmatrix}
所以 B_2=A_2\cdot R_2=\begin{bmatrix} 0.1508 & 0.1481 & 0.1474 & 0.1636& 0.1701 & 0.2200 \end{bmatrix}
③ 市场需求的二级评判:
R_3=\begin{bmatrix} 0.15 & 0.14 & 0.13& 0.18& 0.14&0.26 \\ 0.16 & 0.15 & 0.18 & 0.14& 0.16 & 0.21 \end{bmatrix}
A_3=\begin{bmatrix} 0.55 &0.45 \end{bmatrix}
所以 B_3=A_3\cdot R_3=\begin{bmatrix} 0.1545 &0.1445 &0.1525 &0.1620 &0.1490 &0.2375 \end{bmatrix}

5)三级模糊综合评价
将二级评判结果 B_1,B_2,B_3 作为行,组成三级评判的单因素评判矩阵:
R=\begin{bmatrix} B_1\\ B_2\\ B_3 \end{bmatrix}
权重分配 A=\begin{bmatrix} 0.40 &0.30 &0.30 \end{bmatrix}
所以 B=A\cdot R=\begin{bmatrix} 0.1480 &0.1428 &0.1562 &0.1863 &0.1575 &0.2093 \end{bmatrix}

由以上结果可知,产品 6 得分最高,可加大投资,产品 1、2 得分较低,应减少投资。

6.代码实现

import numpy as np

# 1.一级综合模糊评价
# 影响运行费用的各因素的单因素评价矩阵为:
R23=np.array([
    [0.18,0.14,0.18,0.14,0.13,0.23],
    [0.15,0.20,0.15,0.25,0.10,0.15],
    [0.25,0.12,0.13,0.12,0.18,0.20],
    [0.16,0.15,0.21,0.11,0.20,0.17],
    [0.23,0.18,0.17,0.16,0.15,0.11],
    [0.19,0.13,0.12,0.12,0.11,0.33],
    [0.17,0.16,0.15,0.08,0.25,0.19]
])
# 权重分配为
A23=np.array([0.20,0.15,0.10,0.10,0.20,0.15,0.10])
# 评价结果
B23=np.dot(A23,R23)

# 2.二级模糊综合评价
# 产品情况的二级评判如下:
R1=np.array([
    [0.12,0.18,0.17,0.23,0.13,0.17],
    [0.15,0.13,0.18,0.25,0.12,0.17],
    [0.14,0.13,0.16,0.18,0.20,0.19],
    [0.12,0.14,0.15,0.17,0.19,0.23],
    [0.16,0.12,0.13,0.25,0.18,0.16]
])
A1=np.array([0.15,0.40,0.25,0.10,0.10])
B1=np.dot(A1,R1)

# 销售能力二级评判如下:
R2=np.array([
    [0.13,0.15,0.14,0.18,0.16,0.25],
    [0.12,0.16,0.13,0.17,0.19,0.23],
    B23,
    [0.14,0.13,0.15,0.16,0.18,0.24],
    [0.16,0.15,0.15,0.17,0.18,0.19]
])
A2=np.array([0.2,0.15,0.25,0.25,0.15])
B2=np.dot(A2,R2)

# 市场需求的二级评判
R3=np.array([
    [0.15,0.14,0.13,0.18,0.14,0.26],
    [0.16,0.15,0.18,0.14,0.16,0.21]
])
A3=np.array([0.55,0.45])
B3=np.dot(A3,R3)

# 3.三级模糊综合评判
R=np.array([B1,B2,B3])
A=np.array([0.4,0.3,0.3])
B=np.dot(A,R)

print(B)

输出结果:

matlab模糊综合评价是一种基于模糊逻辑的评价方法,它能够处理那些无法用传统的精确数学方法解决的问题。模糊综合评价在许多领域都有广泛的应用,如经济、环境、管理等。 在进行模糊综合评价时,首先需要建立评价指标体系。评价指标是描述被评价对象的各个方面特征的参数。然后,需要为每个评价指标设定模糊子集,模糊子集是模糊综合评价的基本处理单元。接下来,通过模糊综合评价方法,将每个指标的模糊子集进行处理,得到其评价值,从而获得对被评价对象的综合评价。 在matlab中,可以使用模糊逻辑工具箱进行模糊综合评价。该工具箱包含了一系列函数和工具,可以用来定义和计算模糊逻辑系统。用户可以通过编写matlab程序或使用图形界面来实现模糊综合评价。 使用matlab进行模糊综合评价的步骤大致如下: 1. 确定评价指标体系,包括各个评价指标和其权重。 2. 设定各个评价指标的模糊子集,可以根据实际情况使用不同的隶属函数。 3. 设定模糊逻辑系统的运算规则,包括模糊关系和模糊推理方法。 4. 输入评价指标的值,进行模糊综合评价计算。 5. 根据评价结果进行决策或进一步优化。 总之,matlab模糊综合评价是一种灵活、高效的评价方法,可以帮助解决那些传统方法难以处理的问题。通过合理设计指标体系和调整模糊子集,我们能够得到准确的综合评价结果,为决策提供有效的参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值