目录
1.引言
处理现实的数学模型可分为三大类:
1)确定性数学模型,即模型背景具有确定性,对象之间具有必然关系。
2)随机性数学模型,即模型背景具有随机性和偶然性。
3)模糊性模型,即模型背景及关系具有模糊性,判断的‘不分明性’。
今天我们来介绍下模糊性模型。
2.模糊集合的分类
主要有三类:偏小型、中间型和偏大型,类似于TOPSIS法中的极大型、极小型、中间型、区间型指标。
举个例子来说就是:“年轻”是一个偏小型的模糊集合,岁数越小,隶属度越大,就越“年轻”;“年老”则是一个偏大型的模糊集合,岁数越大,隶属度越大,就越“年老”;而“中年”则是一个中间型集合,岁数只有处在某个中间的范围,隶属度才越大。
然而不管模糊集合是哪一种类型,隶属度越大,属于这个集合的程度也越大。
3.评价问题概述
模糊评价问题是要把论域中的对象对应评语集中一个指定的评语,或者将方案作为评语集并选择一个最优方案。
在模糊综合评价中,引入三个集合:
① 因素集(评价指标集):
② 评语集(评语的结果):
③ 权重集(指标的权重):
例如:评价一个学生的表现:
U={专业排名,课外实践,志愿服务,竞赛成绩}
V={优,良,差}
A={0.4,0.2,0.1,0.3}
4.解题步骤
1.一级模糊综合评价:
① 构造判断矩阵R。
② 进行模糊综合评判:B=A·R(即权重·判断矩阵)。
2.多层次模糊综合评价模型(结合后面例题会好理解一些):
① 给出被评价的对象集合:
② 确定因素集(指标体系):,
若因素众多,往往将 按某些属性分成 s 个子集,即
③ 确定评语集: 。
④ 由因素集 与评语集
,可获得一个评价矩阵
。
⑤ 对每一个 ,分别作出综合决策,
。
⑥ 将每一个 视为一个元素,记