目录
1.引言
处理现实的数学模型可分为三大类:
1)确定性数学模型,即模型背景具有确定性,对象之间具有必然关系。
2)随机性数学模型,即模型背景具有随机性和偶然性。
3)模糊性模型,即模型背景及关系具有模糊性,判断的‘不分明性’。
今天我们来介绍下模糊性模型。
2.模糊集合的分类
主要有三类:偏小型、中间型和偏大型,类似于TOPSIS法中的极大型、极小型、中间型、区间型指标。
举个例子来说就是:“年轻”是一个偏小型的模糊集合,岁数越小,隶属度越大,就越“年轻”;“年老”则是一个偏大型的模糊集合,岁数越大,隶属度越大,就越“年老”;而“中年”则是一个中间型集合,岁数只有处在某个中间的范围,隶属度才越大。
然而不管模糊集合是哪一种类型,隶属度越大,属于这个集合的程度也越大。
3.评价问题概述
模糊评价问题是要把论域中的对象对应评语集中一个指定的评语,或者将方案作为评语集并选择一个最优方案。
在模糊综合评价中,引入三个集合:
① 因素集(评价指标集):
② 评语集(评语的结果):
③ 权重集(指标的权重):
例如:评价一个学生的表现:
U={专业排名,课外实践,志愿服务,竞赛成绩}
V={优,良,差}
A={0.4,0.2,0.1,0.3}
4.解题步骤
1.一级模糊综合评价:
① 构造判断矩阵R。
② 进行模糊综合评判:B=A·R(即权重·判断矩阵)。
2.多层次模糊综合评价模型(结合后面例题会好理解一些):
① 给出被评价的对象集合:
② 确定因素集(指标体系):,
若因素众多,往往将 按某些属性分成 s 个子集,即
③ 确定评语集: 。
④ 由因素集 与评语集 ,可获得一个评价矩阵 。
⑤ 对每一个 ,分别作出综合决策, 。
⑥ 将每一个 视为一个元素,记 ,可得 的单因素判断矩阵 ,将每个 作为 的一部分,反映了 的某种属性,按重要性分配权重 ,由此得到二级模糊综合评价模型为:
⑦ 依次类推可以得到多层次模糊综合评价模型。
5.举例说明
例:对某陶瓷厂生产的6种产品的销售前景进行评判。
1)影响评判对象因素集的选取
从产品情况、销售能力、市场需求三个方面考虑,根据专家评判法,得到评判对象因素集及子因素组成(如下图),因素后面数据表示权重:
2)备择集 V={1,2,3,4,5,6} 代表6种不同的陶瓷产品。
3)一级模糊综合评价
通过上图可以看出,“运行费用”下属的三级指标是定量指标,有具体数据,对这些数据进行归一化即可求出各种产品的该指标与总指标的比重,得到单因素隶属度。而其他因素如产品品牌、产品质量等可以通过市场调查,把消费者满意度来作为单因素隶属度。
6种产品的单因素隶属度如下表:
因素 | 产品1 | 产品2 | 产品3 | 产品4 | 产品5 | 产品6 | |
---|---|---|---|---|---|---|---|
u_11产品品牌 | 0.12 | 0.18 | 0.17 | 0.23 | 0.13 | 0.17 | |
u_12产品质量 | 0.15 | 0.13 | 0.18 | 0.25 | 0.12 | 0.17 | |
u_13性价比 | 0.14 | 0.13 | 0.16 | 0.18 | 0.20 | 0.19 | |
u_14产品款式 | 0.12 | 0.14 | 0.15 | 0.17 | 0.19 | 0.23 | |
u_15产品包装 | 0.16 | 0.12 | 0.13 | 0.25 | 0.18 | 0.16 | |
u_21店铺信用度 | 0.13 | 0.15 | 0.14 | 0.18 | 0.16 | 0.24 | |
u_22售后服务 | 0.12 | 0.16 | 0.13 | 0.17 | 0.19 | 0.23 | |
u_23运行费用 | u_231材料费 | 0.18 | 0.14 | 0.18 | 0.14 | 0.13 | 0.23 |
u_232运输费用 | 0.15 | 0.20 | 0.15 | 0.25 | 0.10 | 0.15 | |
u_233设备维修费用 | 0.25 | 0.12 | 0.13 | 0.12 | 0.18 | 0.20 | |
u_234设备折旧费用 | 0.16 | 0.15 | 0.21 | 0.11 | 0.20 | 0.17 | |
u_235人员工资 | 0.23 | 0.18 | 0.17 | 0.16 | 0.15 | 0.11 | |
u_236电耗费用 | 0.19 | 0.13 | 0.12 | 0.12 | 0.11 | 0.33 | |
u_237水耗费用 | 0.17 | 0.16 | 0.15 | 0.08 | 0.25 | 0.19 | |
u_24销售人员能力 | 0.14 | 0.13 | 0.15 | 0.16 | 0.18 | 0.24 | |
u_25广告、宣传 | 0.16 | 0.15 | 0.15 | 0.17 | 0.18 | 0.19 | |
u_31行业需求 | 0.15 | 0.14 | 0.13 | 0.18 | 0.14 | 0.26 | |
u_32家庭需求 | 0.16 | 0.15 | 0.18 | 0.14 | 0.16 | 0.21 |
由上表可知:影响运行费用的各因素的单因素评价矩阵
又已知权重分配 所以运行费用的一级评判为:
4)二级模糊综合评价
对产品情况、销售能力、市场需求下属的单因素指标进行二级评判,可知:
① 产品情况的二级评判:
所以产品情况的二级评判如下:
② 销售能力的二级评判:
可将运行费用的一级评判结果作为二级的单因素评价值,即评价矩阵的第三行,如此可以得到:
所以
③ 市场需求的二级评判:
所以
5)三级模糊综合评价
将二级评判结果 作为行,组成三级评判的单因素评判矩阵:
权重分配
所以
由以上结果可知,产品 6 得分最高,可加大投资,产品 1、2 得分较低,应减少投资。
6.代码实现
import numpy as np
# 1.一级综合模糊评价
# 影响运行费用的各因素的单因素评价矩阵为:
R23=np.array([
[0.18,0.14,0.18,0.14,0.13,0.23],
[0.15,0.20,0.15,0.25,0.10,0.15],
[0.25,0.12,0.13,0.12,0.18,0.20],
[0.16,0.15,0.21,0.11,0.20,0.17],
[0.23,0.18,0.17,0.16,0.15,0.11],
[0.19,0.13,0.12,0.12,0.11,0.33],
[0.17,0.16,0.15,0.08,0.25,0.19]
])
# 权重分配为
A23=np.array([0.20,0.15,0.10,0.10,0.20,0.15,0.10])
# 评价结果
B23=np.dot(A23,R23)
# 2.二级模糊综合评价
# 产品情况的二级评判如下:
R1=np.array([
[0.12,0.18,0.17,0.23,0.13,0.17],
[0.15,0.13,0.18,0.25,0.12,0.17],
[0.14,0.13,0.16,0.18,0.20,0.19],
[0.12,0.14,0.15,0.17,0.19,0.23],
[0.16,0.12,0.13,0.25,0.18,0.16]
])
A1=np.array([0.15,0.40,0.25,0.10,0.10])
B1=np.dot(A1,R1)
# 销售能力二级评判如下:
R2=np.array([
[0.13,0.15,0.14,0.18,0.16,0.25],
[0.12,0.16,0.13,0.17,0.19,0.23],
B23,
[0.14,0.13,0.15,0.16,0.18,0.24],
[0.16,0.15,0.15,0.17,0.18,0.19]
])
A2=np.array([0.2,0.15,0.25,0.25,0.15])
B2=np.dot(A2,R2)
# 市场需求的二级评判
R3=np.array([
[0.15,0.14,0.13,0.18,0.14,0.26],
[0.16,0.15,0.18,0.14,0.16,0.21]
])
A3=np.array([0.55,0.45])
B3=np.dot(A3,R3)
# 3.三级模糊综合评判
R=np.array([B1,B2,B3])
A=np.array([0.4,0.3,0.3])
B=np.dot(A,R)
print(B)
输出结果: