一.题目链接:
Kth Minimum Clique
二.题目大意:
有 n 个点,有着各自的点权.
给出连通的边.
求权值 k 大的完全子图.
三.分析:
由于 n ≤ 1e3,所以直接暴搜即可.
这里和状压 DP 有点像,搜索的是状态以及对应的权值.
考虑状态的转移,比如在什么情况下,i 点可以加入.
因为是求完全子图,所以现状态应真包含于 i 点的连接点,否则就不是完全图.
那么怎样判断是否包含呢,用 bitset 可以轻松实现这一点.
不过,这样会有重复.
这个问题可以通过规定状态枚举顺序来解决.
即只在当前状态最后一个 1 之前(如果存在的话)加点.
bitset学习
四.代码实现:
#include <set>
#include <map>
#include <ctime>
#include <queue>
#include <cmath>
#include <stack>
#include <bitset>
#include <vector>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define eps 1e-6
#define pi acos(-1.0)
#define ll long long int
using namespace std;
const int M = (int)1e2;
const ll inf = 0x3f3f3f3f3f;
struct node
{
ll w;
bitset <M + 5> bs;
};
ll w[M + 5];
bitset <M + 5> Edge[M + 5];
struct cmp
{
bool operator()(node a, node b)
{
return a.w > b.w;
}
};
ll bfs(int n, int k)
{
ll ans = -1;
bitset <M + 5> bs;
priority_queue <node, vector<node>, cmp> q;
q.push({0, bs});
struct node p;
while(!q.empty())
{
p = q.top();
q.pop();
k--;
if(!k)
{
ans = p.w;
break;
}
int pos = 0;
for(int i = 0; i < n; ++i)
{
if(p.bs[i])
pos = i;
}
for(int i = pos; i < n; ++i)
{
if(!p.bs[i] && ((p.bs & Edge[i]) == p.bs))
{
p.bs[i] = 1;
q.push({p.w + w[i], p.bs});
p.bs[i] = 0;
}
}
}
return ans;
}
int main()
{
int n, k;
scanf("%d %d", &n, &k);
for(int i = 0; i < n; ++i)
scanf("%lld", &w[i]);
int x;
for(int i = 0; i < n; ++i)
{
for(int j = 0; j < n; ++j)
{
scanf("%1d", &x);
Edge[i][j] = x;
}
}
ll ans = bfs(n, k);
printf("%lld\n", ans);
return 0;
}