随机森林与极端随机森林

极端随机森林(ET)是一种类似随机森林的集成学习算法,它使用全部训练样本而非随机抽样,并且在特征选择上采取完全随机的方式。与随机森林相比,ET在每个节点的划分上更具有随机性,导致单棵树的预测可能不准确,但通过集成多棵树,可以得到强大的预测能力。ET的预测误差计算也利用了全部训练样本,即使样本相同,由于分叉属性的随机性,预测结果也会有所不同。
摘要由CSDN通过智能技术生成

ET或Extra-Trees(Extremely randomized trees,极端随机树)是由PierreGeurts等人于2006年提出。
该算法与随机森林算法十分相似,都是由许多决策树构成。

极端随机森林与随机森林有两点主要的区别:

1、随机森林应用的是Bagging模型(随机抽取样本),而极端随机森林是使用所有的训练样本得到每棵决策树,也就是每棵决策树应用的是相同的全部训练样本;

2、随机森林是在一个随机子集内得到最佳分叉属性,而ET是完全随机的得到分叉值,从而实现对决策树进行分叉的。

对于第2点的不同,我们再做详细的介绍。

当特征属性是类别的形式时(使用基尼系数进行划分):

随机选择具有某些类别的样本为左分支,而把具有其他类别的样本作为右分支;

当特征属性是数值的形式时(使用均方误差进行划分):

1 随机选择一个处于该特征属性的最大值和最小值之间的任意数,
2 当样本的该特征属性值大于该值时,作为左分支,当小于该值时,作为右分支。

这样就实现了在该特征属性下把样本随机分配到两个分支上的目的。
然后计算此时的分叉值。遍历节点内的所有特征属性,按上述方法得到所有特征属性的分叉值,我们选择分叉值最大的那种形式实现对该节点的分叉。

从上面的介绍可以看出,这种方法比随机森林的随机性更强。

对于某棵决策树,由于它的最佳分叉属性是随机选择的,因此用它的预测结果往往是不准确的,但多棵决策树组合在一起,就可以达到很好的预测效果。

当ET构建好了以后,我们也可以应用全部的训练样本来得到该ET的预测误差。
这是因为尽管构建决策树和预测应用的是同一个训练样本集,但由于最佳分叉属性是随机选择的,所以我们仍然会得到完全不同的预测结果,用该预测结果就可以与样本的真实响应值比较,从而得到预测误差。

如果与随机森林相类比的话,在ET中,全部训练样本都是OOB样本,所以计算ET的预测误差,也就是计算这个OOB误差。

在这里,我们仅仅介绍了ET算法与随机森林的不同之处,ET算法的其他内容(如预测、OOB误差的计算)与随机森林是完全相同的,具体内容请看关于随机森林的介绍。

总结:
相比较随机森林来讲,极端随机森林主要的区别是:

  1. 极端随机森林使用全部样本数据
  2. 极端随机森林的最佳分叉属性是随机选择的

参考:
https://blog.csdn.net/zhaocj/article/details/51648966
https://blog.csdn.net/xbmatrix/article/details/69488867

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值