过采样:SMOTE算法

前言:在比赛中遇到关于样本不均衡问题,特地过来补补知识点!

1、smote原理

过采样的技术有非常多,最常见的就是随机过采样和SMOTE过采样。
随机过采样就是从少的类中进行随机进行采样然后拼接上去,这种效果很多时候和加权差不大。还有一种较常见的也是现在比赛中出现最多的采样方法,SMOTE采样。
SMOTE的示意图如下,

SMOTE算法的生成过程为:

  1. 对于少数类中每一个样本x,以欧氏距离为标准计算它到少数类样本集中所有样本的距离,得到其k近邻。
  2. 根据样本不平衡比例设置一个采样比例以确定采样倍率N,对于每一个少数类样本x,从其k近邻中随机选择若干个样本,假设选择的近邻为xn。
  3. 对于每一个随机选出的近邻xn,分别与原样本按照如下的公式构建新的样本
    在这里插入图片描述

2、smote缺点

从算法中,我们可以发现,SMOTE采样其实就是生成样本之间的一些样本

但是因为思路简单,我们也很容易就可以发现SMOTE算法的一些缺点。

  1. 在近邻选择时,K值的决定一般较难,可以枚举然后根据实验效果来定;
  2. 算法无法克服非平衡数据集的数据分布问题,容易产生分布边缘化问题。如果正样本都分布在边缘,我们通过采样正样本来生成样本,那么这样新生成的样本将也会全部在边缘,且会越来越边缘化,从而模糊了正类样本和负类样本的边界,而且使边界变得越来越模糊。这种边界模糊性,虽然使数据集的平衡性得到了改善,但有时也会加大了分类算法进行分类的难度.

3、Python实现smote

import random
from sklearn.neighbors import NearestNeighbors
import numpy as np

class Smote:
    """
    SMOTE过采样算法.


    Parameters:
    -----------
    k: int
        选取的近邻数目.
    sampling_rate: int
        采样倍数, attention sampling_rate < k.
    newindex: int
        生成的新样本(合成样本)的索引号.
    """
    def __init__(self, sampling_rate=5, k=5):
        self.sampling_rate = sampling_rate
        self.k = k
        self.newindex = 0

    def fit(self, X, y=
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值