数据挖掘
YJ语
这个作者很懒,什么都没留下…
展开
-
系列二:数据预处理
前言旨在对数据挖掘有个系统的认识,这部分仅仅是对于数据预处理!对于常规的数据预处理主要分为以下4步骤:(1) 数据清洗:解决缺失值、异常值、离群点的问题(2) 数据集成:解决样本重复、指标构建、属性高度相似的问题(2) 数据规约:解决数据规模过大的问题(4) 数据变换:将数据转化为更方便分析的数据2 数据预处理2.1 数据清洗2.1.1 数据缺失(1) 填充缺失值1)使用属性的均值填充缺失值2)使用与给定元组同一类的所有样本的属性均值填充相应的缺失值3)使用最可能的值填充缺失值:原创 2020-12-21 18:05:20 · 3330 阅读 · 1 评论 -
系列一:认识数据
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言1 认识数据1.1 数得来源1.2 数据得属性划分1.3 数据得描述性统计1.4 对于该数据得使用总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。原创 2020-12-17 00:08:47 · 585 阅读 · 1 评论