SVM——(三)对偶性和KKT条件(Lagrange duality and KKT condition)

本文介绍了SVM中的拉格朗日对偶性和Karush-Kuhn-Tucker(KKT)条件,探讨了如何利用对偶问题解决原始优化问题,并通过一个示例解释了对偶解与原始解的关系。
摘要由CSDN通过智能技术生成

之前说到过拉格朗日乘数法以及推导过程,那么今天要说的就是拉格朗日对偶性以及KKT条件

1.Lagrange multipliers

一句话说,拉格朗日乘数法就是用来解决条件极值的一个方法,且约束条件都是等式(equality)的形式;由拉格朗日乘数法通常用来解决一些凸优化(convex optimization)问题,所以一般情况下求解的都是极小值,即 min ⁡ ω f ( ω ) \min_{\omega} f(\omega) minωf(ω)

顺便说一句,convex function 的图像如下:

这里写图片描述

请看下面这个优化问题:

min ⁡ ω        f ( ω ) s . t .        h i ( ω ) = 0 , i = 1 , ⋯   , l . \begin{aligned} \min_{\omega} \;\;\;f(\omega)&\\ s.t. \;\;\;h_i(\omega)&=0,i=1, \cdots,l. \end{aligned} ωminf(ω)s.t.hi(ω)=0,i=1,,l.

其中 ω 是 一 个 向 量 \omega是一个向量 ω;很明显这是一个条件(等式)极值问题,且用拉格朗日乘数法就能解决。

L a n g r a n g i a n \bf{Langrangian} Langrangian
L ( ω , β ) = f ( ω ) + ∑ i = 1 l β i h i ( ω ) \mathcal{L}(\omega,\beta) = f(\omega)+\sum^l_{i=1}\beta_ih_i(\omega) L(ω,β)=f(ω)+i=1lβihi(ω)

其中 β i \beta_i βi是拉格朗日乘子;然后对式子中所有的参数求偏导,令其为0(推导)求解出所有参数;

∂ L ∂ ω i = 0 ;        ∂ L ∂ β i = 0 \frac{\partial\mathcal{L}}{\partial\omega_i}=0;\;\;\;\frac{\partial\mathcal{L}}{\partial\beta_i}=0 ωiL=0;βiL=0

2.Generalized Lagrangian

请看如下优化问题:

min ⁡ ω        f ( ω ) s . t .        g i ( ω ) ≤ 0 , i = 1 , ⋯   , k . h i ( ω ) = 0 , i = 1 , ⋯   , l . (01) \begin{aligned} \min_{\omega} \;\;\;f(\omega)&\tag {01}\\ s.t. \;\;\;g_i(\omega)&\leq0,i=1, \cdots,k.\\[2ex] h_i(\omega)&=0,i=1, \cdots,l. \end{aligned} ωminf(ω)s.t.gi(ω)hi(ω)0,i=1,,k.=0,i=1,,l.(01)

与之前明显不同的就是多了不等式的约束条件;为了解决这个问题,下面我们就要定义广义的拉格朗日乘数法(Generalized Lagrangian)。

G e n e r a l i z e d L a g r a n g i a n \bf{Generalized Lagrangian} GeneralizedLagrangian
L ( ω , α , β ) = f ( ω ) + ∑ i = 1 k α i g i ( ω ) + ∑ i = 1 l β i h i ( ω ) (02) \mathcal{L}(\omega,\alpha,\beta) = f(\omega)+\sum^k_{i=1}\alpha_ig_i(\omega)+\sum^l_{i=1}\beta_ih_i(\omega)\tag {02} L(ω,α,β)=f(ω)+i=1kαigi(ω)+i=1lβihi(ω)(02)

其中 α i \alpha_i αi β i \beta_i βi都是拉格朗日乘子;接下来就是进行求解,然而求解方法却与之前大相径庭了。

3.Primal and dual optimization problem

3.1 Primal optimization problem

定义:
θ p ( ω ) = max ⁡ α , β : α i ≥ 0 L ( ω , α , β ) (03) \theta_p(\omega)=\max_{\alpha,\beta:\alpha_i\geq0}\mathcal{L}(\omega,\alpha,\beta)\tag {03} θp(ω)=α,β:αi0maxL(ω,α,β)(03)

这个式子表示的含义是:求 L ( ω , α , β ) \mathcal{L}(\omega,\alpha,\beta) L(ω,α,β)的最大值, α , β \alpha,\beta α,β作为自变量(与 ω \omega ω无关),求得的结果 θ p \theta_p θp是关于 ω \omega ω的函数

我们现在来做这样一个假设,存在 g i g_i gi h i h_i hi使得原约束条件不成立,即( g i ( ω ) > 0    o r    h i ( ω ) ≠ 0 g_i(\omega)>0\;or\;h_i(\omega)\ne0 gi(ω)>0orhi(ω)=0),如果是这样的话 θ p \theta_p θp会发生什么变化呢?

如果 g i ( ω ) > 0 g_i(\omega)>0 gi(ω)>0,为了求得 L \mathcal{L} L的最大值,只需要取 α i \alpha_i αi为无穷大,则此时 L \mathcal{L} L最大,但又没有意义;同样,如果 h i ( ω ) ≠ 0 h_i(\omega)\neq0 hi(ω)=0,取 β \beta β为无穷大( h i h_i hi与<

  • 10
    点赞
  • 54
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值