hdu 4821 String 字符串hash

String

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 248    Accepted Submission(s): 83


Problem Description
Given a string S and two integers L and M, we consider a substring of S as “recoverable” if and only if
  (i) It is of length M*L;
  (ii) It can be constructed by concatenating M “diversified” substrings of S, where each of these substrings has length L; two strings are considered as “diversified” if they don’t have the same character for every position.

Two substrings of S are considered as “different” if they are cut from different part of S. For example, string "aa" has 3 different substrings "aa", "a" and "a".

Your task is to calculate the number of different “recoverable” substrings of S.
 

Input
The input contains multiple test cases, proceeding to the End of File.

The first line of each test case has two space-separated integers M and L.

The second ine of each test case has a string S, which consists of only lowercase letters.

The length of S is not larger than 10^5, and 1 ≤ M * L ≤ the length of S.
 

Output
For each test case, output the answer in a single line.
 

Sample Input
  
  
3 3 abcabcbcaabc
 

Sample Output
  
  
2
 

Source
 
字符串处理题,给定一个字符串,询问有多少个连续子串,其满足:
1.长度为L*M且连续
2.将该子串按顺序切割为M份,每份长度为L,且每个部分均不相同。

这一题用到了字符串hash的技巧
采用BKDhash处理较为方便(类似多项式hash),设s[0]到s[l-1]的hash值为a[l]
则对于s[l]到s[l+k-1]一段的hash值为a[l+k-1]-s[l-1]*base[k]
对于每个开头按顺序处理一次,用map记录是否出现重复的hash即可。
unsigned long long base[100005];  
unsigned long long pos[100005];  
unsigned long long shash[100005];  
map <unsigned long long,int>hash_table;  
main()  
{  
  
    int m,l,n,k;  
    base[0]=1;  
    for (int i=1;i<=100000;i++)  
        base[i]=base[i-1]*131;  
    while(~scanf("%d%d",&m,&l)){  
    pos[0]=0;  
    scanf("%s",a);  
    n=strlen(a);  
    for (int i=0;i<n;i++)  
            pos[i+1]=pos[i]*131ull+a[i];  
    for (int i=1;i<=n-l+1;i++)  
            shash[i]=pos[i+l-1]-pos[i-1]*base[l];//计算每个长度为l的hash  
    int fp,lp,ti,ans=0;  
    for (int i=1;(i<=l)&&i+l-1<=n;i++)  
    {  
        ti=0;  
        hash_table.clear();  
        fp=i;  
        lp=i+l*(m-1);//fp代表开头 lp代表结尾  
        if (lp+l-1>n) break;  
        for (int j=fp;j<=lp;j+=l)  
        {  
            if (hash_table[shash[j]]==0) ++ti;  
            hash_table[shash[j]]++;  
        }  
        if (ti==m) ans++;  
        while (lp+l+(l-1)<=n)  
        {  
            if (hash_table[shash[fp]]==1) --ti;  
            hash_table[shash[fp]]--;  
            fp+=l;  
            lp+=l;  
            if (lp>n) break;  
            if (hash_table[shash[lp]]==0) ++ti;  
            hash_table[shash[lp]]++;  
            if (ti==m) ans++;  
        }  
    }  
    printf("%d\n",ans);  
    }  
}  



题意:

给定整数M L

一个字符串s

我们定义一个子串为"好"串 iff

1、长度为 M*L

2、把这个好串分成M段,每段长度为L,且每段各不相同。


且我们得到的这些好串不重复计算(即把这些好串去重)

问有几个好串


typedef unsigned long long ull;
const int N = 100005;
int n, m;
char s[N];
ull base[N], has[N], bas = 31;
map<ull, int>mp;
int main(){
    base[0] = 1;
    for(int i = 1; i < N; i++)base[i] = base[i-1]*bas;

    while(cin>>n>>m){
        scanf("%s", s);
        int slen = strlen(s);
        has[slen] = 0;
        for(int i = slen-1; i >= 0; i--)
            has[i] = has[i+1]*bas+s[i]-'a'+1;
        int ans = 0;
        for(int i = 0; i < m && i+n*m<=slen; i++)
        {
            mp.clear();
            for(int j = i; j < i+n*m; j+=m)
            {
            	mp[ has[j] - has[j+m]*base[m] ] ++;
            }
            ans += mp.size() == n;
            for(int j = i+n*m; j+m <= slen; j+=m){
            	ull tmp = has[j-n*m] - has[j-(n-1)*m]*base[m];
            	mp[tmp] --;
            	if(mp[tmp]==0)mp.erase(tmp);
            	tmp = has[j] - has[j+m]*base[m];
            	mp[tmp]++;
            	ans += mp.size() == n;
            }
        }
        cout<<ans<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值