LA 4726 Average
题目大意:
给一个长为n的01序列,要求选择一个连续序列,其长度不小于L,使得序列的平均值尽量大,若有多解,长度尽可能小,若仍有多解,起点编号尽可能小.
题目分析:
以序列长度为横坐标,1的个数为纵坐标,可以在坐标系上找到n个点,题目问题实际上转化成了求斜率,即斜率优化.用单调队列维护下凸包,O(n)复杂度.
具体论证参考 《浅谈数形结合思想在信息学竞赛中的应用》
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=100000+10;
int sum[maxn],que[maxn],n,L;
char readchar()
{
char ch=getchar();
while(ch!='0'&&ch!='1') ch=getchar();
return ch;
}
double slope(int i,int j)
{
return 1.0*(sum[j]-sum[i])/(j-i);
}
int main()
{
int T;
scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&L);
for(int i=1;i<=n;i++) sum[i]=sum[i-1]+readchar()-'0';
double ans=0;
int ansl=0,ansr=L;
int head=0,tail=-1;
for(int i=L;i<=n;i++) {
while(head<tail&&slope(que[tail],i-L)<=slope(que[tail-1],i-L)) --tail;//维护下凸包
que[++tail]=i-L;
while(head<tail&&slope(que[head],i)<=slope(que[head+1],i)) ++head;//删去前面没有用的点
double now=slope(que[head],i);
if(now>ans||(now==ans&&i-que[head]<ansr-ansl))
ans=now,ansl=que[head],ansr=i;
}
printf("%d %d\n",ansl+1,ansr);
}
return 0;
}