LA 4726 Average (单调队列+斜率优化)

LA 4726 Average

题目大意:

给一个长为n的01序列,要求选择一个连续序列,其长度不小于L,使得序列的平均值尽量大,若有多解,长度尽可能小,若仍有多解,起点编号尽可能小.

题目分析:

以序列长度为横坐标,1的个数为纵坐标,可以在坐标系上找到n个点,题目问题实际上转化成了求斜率,即斜率优化.用单调队列维护下凸包,O(n)复杂度.
具体论证参考 《浅谈数形结合思想在信息学竞赛中的应用》

代码:

#include<cstdio>
#include<iostream>
#include<algorithm>

using namespace std;

const int maxn=100000+10;

int sum[maxn],que[maxn],n,L;

char readchar()
{
    char ch=getchar();
    while(ch!='0'&&ch!='1') ch=getchar();
    return ch;
}

double slope(int i,int j)
{
    return 1.0*(sum[j]-sum[i])/(j-i);
}

int main()
{
    int T;
    scanf("%d",&T);
    while(T--) {
        scanf("%d%d",&n,&L);
        for(int i=1;i<=n;i++) sum[i]=sum[i-1]+readchar()-'0';
        double ans=0;
        int ansl=0,ansr=L;
        int head=0,tail=-1;
        for(int i=L;i<=n;i++) {
            while(head<tail&&slope(que[tail],i-L)<=slope(que[tail-1],i-L)) --tail;//维护下凸包 
            que[++tail]=i-L;
            while(head<tail&&slope(que[head],i)<=slope(que[head+1],i)) ++head;//删去前面没有用的点 
            double now=slope(que[head],i);
            if(now>ans||(now==ans&&i-que[head]<ansr-ansl)) 
                ans=now,ansl=que[head],ansr=i;
        }
        printf("%d %d\n",ansl+1,ansr);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值