LA 4726 平均值

题目大意
给定一个长度为n的01序列选择一个长度至少为L的连续子序列,使得子序列中数值之和的平均值最小,选择尽量小尽量少的序列。
分析
这是一个好题 ,难点就在于单调队列的维护,删除上凸点,保留下凹点。
原理见 周源大佬的数形结合
上代码



#include<iostream>
#include<algorithm>
#include<string.h>
#define maxn 100000+10
using namespace std;


struct point {
	int x, y;
	point() :x(0), y(0) {};
}p[maxn],q[maxn];

struct line {
	point a, b;
	line(point a, point b) :a(a), b(b) {
	}
	bool operator >(const line &li) const {
		return (li.a.y - li.b.y) *(a.x - b.x)<(li.a.x - li.b.x)*(a.y - b.y) ;
	}
	bool operator == (const line&li)const {
		return (li.a.y - li.b.y) *(a.x - b.x)==(li.a.x - li.b.x)*(a.y - b.y);
	}
	bool operator >=(const line&li)const {
		return *this > li || *this == li;
	}
	line operator =(const line li)  {
		a = li.a, b = li.b;
		return *this;
	}
	int len() {
		return b.x - a.x;
	}
};
int n,L;


void init() {
	char ch[maxn];
	cin >> n >> L;
	cin >> ch;
	int c = 0;
	for (int i = 1; i<=n; i++) {
		if (ch[i - 1] == '1') c++;
		p[i].x = i, p[i].y = c;
	}
}
void  solve() {
	int r = 0, f= -1;
	line maxl(p[0], p[L]);
	for (int i = L; i <= n; i++) {
		int cur = i - L;
		while (r < f&&line(q[f - 1], p[cur]) >= line(q[f], p[cur])) f--;
		q[++f] = p[cur];
		while (r < f&&line(q[r + 1], p[i]) >= line(q[r], p[i])) r++;
		line t(q[r], p[i]);
		if (t > maxl || (t == maxl && t.len()<maxl.len())) { maxl = t; }
	}
	printf("%d %d\n", maxl.a.x + 1, maxl.b.x);
}
int main()
{
	int t;
	cin >> t;
	while (t--) {
		init();
		solve();
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值