题目大意
给定一个长度为n的01序列选择一个长度至少为L的连续子序列,使得子序列中数值之和的平均值最小,选择尽量小尽量少的序列。
分析
这是一个好题 ,难点就在于单调队列的维护,删除上凸点,保留下凹点。
原理见 周源大佬的数形结合
上代码
#include<iostream>
#include<algorithm>
#include<string.h>
#define maxn 100000+10
using namespace std;
struct point {
int x, y;
point() :x(0), y(0) {};
}p[maxn],q[maxn];
struct line {
point a, b;
line(point a, point b) :a(a), b(b) {
}
bool operator >(const line &li) const {
return (li.a.y - li.b.y) *(a.x - b.x)<(li.a.x - li.b.x)*(a.y - b.y) ;
}
bool operator == (const line&li)const {
return (li.a.y - li.b.y) *(a.x - b.x)==(li.a.x - li.b.x)*(a.y - b.y);
}
bool operator >=(const line&li)const {
return *this > li || *this == li;
}
line operator =(const line li) {
a = li.a, b = li.b;
return *this;
}
int len() {
return b.x - a.x;
}
};
int n,L;
void init() {
char ch[maxn];
cin >> n >> L;
cin >> ch;
int c = 0;
for (int i = 1; i<=n; i++) {
if (ch[i - 1] == '1') c++;
p[i].x = i, p[i].y = c;
}
}
void solve() {
int r = 0, f= -1;
line maxl(p[0], p[L]);
for (int i = L; i <= n; i++) {
int cur = i - L;
while (r < f&&line(q[f - 1], p[cur]) >= line(q[f], p[cur])) f--;
q[++f] = p[cur];
while (r < f&&line(q[r + 1], p[i]) >= line(q[r], p[i])) r++;
line t(q[r], p[i]);
if (t > maxl || (t == maxl && t.len()<maxl.len())) { maxl = t; }
}
printf("%d %d\n", maxl.a.x + 1, maxl.b.x);
}
int main()
{
int t;
cin >> t;
while (t--) {
init();
solve();
}
return 0;
}