LA 3704 Cellular Automaton (矩阵快速幂)

LA 3704 Cellular Automaton

题目大意:

一个环被分成n份,每个格子取值为0~m-1.给定距离d,则每次操作后每个格子的值为与其距离不超过d的格子操作前的值之和除以m的余数.
( 1n500,1m106,0d<n/2,1k107 )

题目分析:

由题意可建立一个矩阵 A ,使得Fk=AkF,显然可以用矩阵快速幂.
但是若采取朴素的快速幂,时间复杂度为 O(d3logk) .而 n500 ,时间复杂度可能过高.
观察可知矩阵 A 的第i行实际是由第0行向右移动i个元素得到的,所以A其实可以压缩成一维,时间复杂度为O(d2logk).

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>

using namespace std;

typedef long long ll;
const int maxn=500+5;

int MOD;

struct Matrix {
    int n;
    ll M[maxn];
    Matrix(){memset(M,0,sizeof(M));n=0;}
    Matrix(int n):n(n){memset(M,0,sizeof(M));}
    Matrix operator * (const Matrix& rhs) const {
        Matrix ret(n);
        for(int i=0;i<n;i++) {
            for(int j=0;j<n;j++)//第i行的元素是由第0行从左往右移动了i个,所以A(i,j)=A(0,j-i) 
                ret.M[i]+=M[j]*rhs.M[(j-i+n)%n];
            ret.M[i]%=MOD;
        }
        return ret;
    }
    Matrix operator *= (const Matrix& rhs) {
        return *this=*this*rhs;
    }
};

Matrix qpow(Matrix x,int y)
{
    Matrix ret=x;
    if(--y==0) return x;
    while(y>0) {
        if(y&1) ret*=x;
        x*=x;y>>=1;
    }
    return ret;
}

int main()
{
    int n,d,k;
    while(~scanf("%d%d%d%d",&n,&MOD,&d,&k)) {
        Matrix A(n),F(n);
        for(int i=0;i<n;i++) scanf("%lld",&F.M[i]);
        for(int i=0;i<n;i++) if(min(i,n-i)<=d) A.M[i]=1;
        A=qpow(A,k);
        F=F*A;
        printf("%lld",F.M[0]);
        for(int i=1;i<n;i++) printf(" %lld",F.M[i]);
        printf("\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值