LA 3704 Cellular Automaton
题目大意:
一个环被分成n份,每个格子取值为0~m-1.给定距离d,则每次操作后每个格子的值为与其距离不超过d的格子操作前的值之和除以m的余数.
(
1≤n≤500,1≤m≤106,0≤d<n/2,1≤k≤107
)
题目分析:
由题意可建立一个矩阵
A
,使得
但是若采取朴素的快速幂,时间复杂度为
O(d3logk)
.而
n≤500
,时间复杂度可能过高.
观察可知矩阵
A
的第i行实际是由第0行向右移动i个元素得到的,所以A其实可以压缩成一维,时间复杂度为
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn=500+5;
int MOD;
struct Matrix {
int n;
ll M[maxn];
Matrix(){memset(M,0,sizeof(M));n=0;}
Matrix(int n):n(n){memset(M,0,sizeof(M));}
Matrix operator * (const Matrix& rhs) const {
Matrix ret(n);
for(int i=0;i<n;i++) {
for(int j=0;j<n;j++)//第i行的元素是由第0行从左往右移动了i个,所以A(i,j)=A(0,j-i)
ret.M[i]+=M[j]*rhs.M[(j-i+n)%n];
ret.M[i]%=MOD;
}
return ret;
}
Matrix operator *= (const Matrix& rhs) {
return *this=*this*rhs;
}
};
Matrix qpow(Matrix x,int y)
{
Matrix ret=x;
if(--y==0) return x;
while(y>0) {
if(y&1) ret*=x;
x*=x;y>>=1;
}
return ret;
}
int main()
{
int n,d,k;
while(~scanf("%d%d%d%d",&n,&MOD,&d,&k)) {
Matrix A(n),F(n);
for(int i=0;i<n;i++) scanf("%lld",&F.M[i]);
for(int i=0;i<n;i++) if(min(i,n-i)<=d) A.M[i]=1;
A=qpow(A,k);
F=F*A;
printf("%lld",F.M[0]);
for(int i=1;i<n;i++) printf(" %lld",F.M[i]);
printf("\n");
}
return 0;
}