UVa 11481 Arrange the Numbers (组合数学+容斥原理)

UVa 11481 Arrange the Numbers


题目大意:

可以将序列 1,2,3,...n 任意重排,但重排后的前 m (mn)个位置恰好有 k (km)个不变,求方案数除以1000000007的余数.
(注意是前m个位置恰好有k个不变,也就是说前m个位置的另外m-k个必须改变)

题目分析:

首先,前m个位置恰好有k个不变,则有 Ckm 个方案数,那么总共的方案数为 CkmAnknk .

但是,方案数中还存在前m个元素中另外m-k个元素仍在原位置的情况.

利用容斥原理:
减去1个元素在原位置的方案数,加上2个元素在原位置的方案数…

所以总方案数为 Ckm(Anknknki=1(1)iCimkAnkinki) .

代码:

#include<cstdio>
#include<iostream>
#include<algorithm>

using namespace std;

const int maxn=1000;
const int MOD=1000000007;

int C[maxn+1][maxn+1],A[maxn+1];//C[i][j]表示i个元素选j个元素的种类数,A[i]表示i个元素选i个元素的排列种类数 

void init(int n)
{
    C[0][0]=1;
    for(int i=1;i<=n;i++) {
        C[i][0]=1;
        for(int j=1;j<=n;j++) C[i][j]=(C[i-1][j-1]+C[i-1][j])%MOD;
    }
    A[0]=1;
    for(int i=1;i<=n;i++) A[i]=(1ll*A[i-1]*i)%MOD;
}

int main()
{
    init(maxn);
    int T,N,M,K,kase=0;
    scanf("%d",&T);
    while(T--) {
        scanf("%d%d%d",&N,&M,&K);
        int B=A[N-K];
        for(int i=1;i<=N-K;i++) B=(0ll+B+((i&1)?-1:1)*(1ll*C[M-K][i]*A[N-K-i]%MOD))%MOD;
        B=(B%MOD+MOD)%MOD;//注意加法和乘法的溢出 
        printf("Case %d: %lld\n",++kase,1ll*C[M][K]*B%MOD);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值