UVa 10692 Huge Mods (指数循环节)

UVa 10692 Huge Mods

题目大意:

给出模数 m 和正整数a1,a2...an,求出 aa...an21 mod m 的值.
(注意指数运算的顺序: 234=2(34)=281 )
( 2m10000,1n10,1ai1000 )

题目分析:

主要是要运用到欧拉定理的推广——指数循环节.

AB mod C=AB mod φ(C)+φ(C) mod C

但是需要注意的是,指数运算自上而下的模数也会改变,如

abcd mod p

x=bcd

ax=ax mod φ(p)+φ(p) mod p

那么对于 bcd 而言,其模数应为 φ(p)

按照顺序,递归求解即可.

代码:

#include<cstdio>
#include<iostream>
#include<algorithm>

using namespace std;

const int maxn=10+5;
const int maxm=10000;

int phi[maxm+1];

void init(int n)
{
    phi[1]=1;
    for(int i=2;i<=n;i++) if(!phi[i])
        for(int j=i;j<=n;j+=i) {
            if(!phi[j]) phi[j]=j;
            phi[j]=phi[j]/i*(i-1);
        }
}

int pow_mod(int x,int y,int mod)
{
    int ret=1;
    while(y>0) {
        if(y&1) ret=ret*x%mod;
        x=x*x%mod;y>>=1;
    }
    return ret;
}

int e[maxn],n;

void dfs(int pos,int mod)
{
    if(pos<n-2) dfs(pos+1,phi[mod]);//递归边界a^b 
    e[pos]=pow_mod(e[pos],e[pos+1]%phi[mod]+phi[mod],mod);
}

int main()
{
    init(maxm);
    int mod,kase=0;
    while(scanf("%d",&mod)==1) {
        scanf("%d",&n);
        for(int i=0;i<n;i++) scanf("%d",&e[i]);
        if(n>1) dfs(0,mod);
        else e[0]%=mod;//n=1时,特殊处理 
        printf("Case #%d: %d\n",++kase,e[0]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值