基础算法之滑动窗口--Java实现(上)--LeetCode题解:长度最小的子数组-无重复字符的子串-最大连续1的个数III-将x减到0的最小操作数

这里是Thembefue

今天讲解算法中较为经典的一个算法 => 滑动窗口

本讲解主要通过题目来讲解以理解算法

讲解分为三部分:题目解析 => 算法讲解 => 编写代码

滑动窗口

在正式进入题目的讲解之前,得先了解一下什么是滑动窗口,以及应该在什么情况下使用。

滑动窗口其实是由"暴力遍历"优化来的,其本质也是双指针,但这个双指针是利用数组等单调性同向移动的,不会倒退,使其像一个窗口一个从左向右滑动。

长度最小的子数组

        题目解析

    

找到一个子数组,使这个子数组的和大于等于给定的目标值,子数组是数组上连续的一段,一定是连续的!

        算法讲解 

· 本题使用暴力遍历的时间复杂度位O(n*2),所以一定会超时。

· 所以我们在暴力遍历的基础上进行优化,根据数组的单调性,我们没必要在 left 指针向右移时,让 right 指针重新回来再遍历一次,这样会导致重复遍历,徒增时间。

· 滑动窗口:这个过程一般都分为四步,进窗口,判断,出窗口,更新结果。

· 其中更新结果可能在出窗口前,也可能在出窗口后,根据题目意思即可。

· 我们先维护一个 sum 变量,用于表示当前窗口中所有元素的全部和,当和大于等于 target时,我们便可更新结果,并且让此时应该让left 指向的元素出窗口。

        编写代码 

class Solution {
    public int minSubArrayLen(int target, int[] nums) {
        int left = 0, right = 0;
        int sum = 0, len = Integer.MAX_VALUE;
        while (right < nums.length) {
            // 进窗口
            sum += nums[right];
            // 开始缩小窗口
            while (sum >= target) {
                len = Math.min(len, right - left + 1);
                sum -= nums[left++]; // 出窗口
            } 
            right++;
        }
        return len == Integer.MAX_VALUE ? 0 : len;
    }
}

无重复字符的最长子串

        题目解析

子串和子数组其实就是一个意思,连续的一段子字符串,且这段字符串不能出现重复的字符,返回其最长子串。

        算法讲解 

· 本题需要借用一个数据结构来实现,也即是哈希表,哈希表记录某个字符出现的次数。

· 首先是进窗口操作,也就是把当前字符放入到哈希表,同时更新其出现的次数。

· 当出现了两次相同的字符时,说明此子串不符合条件。此时 left 指针移动,缩小窗口。

· 随后更新结果。

 

        编写代码

class Solution {
    public int lengthOfLongestSubstring(String s) {
        int[] hash = new int[128];
        int left = 0, right = 0;
        int len = 0;
        while (right < s.length()) {
            // 进窗口
            hash[s.charAt(right)]++;
            while (hash[s.charAt(right)] > 1) {
                // 出窗口
                hash[s.charAt(left++)]--;
            }
            // 更新数据
            len = Math.max(len, right - left + 1);
            right++;
        }
        return len;
    }
}

 最大连续1的个数 III

        题目解析

同样是求符合条件的最长子数组,但其实不用真的修改数组的元素,不然要改回去就麻烦了。

        算法讲解 

· 我们可以使用一个计数器,来统计此时窗口中0出现的次数,0出现了多少次,就要将其变成1多少次。所以进出窗口的操作大差不差。

· 但是有一个细节,在出窗口时,0计数器不能直接减小,但 left指向的元素为0时,才能减去,否则 left一直减小,直到 0 计数器减小到题目条件时。

 

        编写代码 

class Solution {
    public int longestOnes(int[] nums, int k) {
        int zeroCount = 0, ret = 0;
        int left = 0, right = 0;
        while (right < nums.length) {
            // 进窗口
            if (nums[right++] == 0) zeroCount++;
            while (zeroCount > k) {
                if (nums[left++] == 0) zeroCount--; // 出窗口
            }
            ret = Math.max(ret, right - left);
        }
        return ret;
    }
}

 将 x 减到 0 的最小操作数

        题目解析

选取数组最左边或者最右边的元素,从 x 中减去该元素,直到将 x 减为0为止,但得返回最小的操作次数。

注意:只能选取最左边或者最右边的元素,选过的元素从数组中删除,不能再使用。

        算法讲解 

· 这题乍一看好像并不是滑动窗口,因为一下操作左边,一下操作右边,并不能形成连续的一段。

· 但是看问题的角度有多种,俗话说:正难则反。假设我们现在选取了左边和右边的元素的一个,假设此时这两个数字的和正好等于 x,也就是满足题目的条件。

· 我们不难发现,除去这两个数字,剩下的元素其实构成了一个子数组,也就是一个窗口,且这个窗口的值等于数组所有元素的总和减去 x。

· 掌握了这个性质,这题就迎刃而解了。

 

        编写代码 

class Solution {
    public int minOperations(int[] nums, int x) {
        int left = 0, right = 0;
        int ret = -1;
        int sum = 0;
        for (int i: nums) sum += i;
        int target = sum - x, temp = 0;
        
        if (target < 0) return -1;
        while (right < nums.length) {
            // 进窗口
            temp += nums[right];
            // 判断
            while (temp > target) {
                temp -= nums[left++]; // 出窗口
            }
            if (temp == target) ret = Math.max(ret, right - left + 1);
            right++;
        }
        return ret == -1 ? -1 : nums.length - ret;
    }
}

好了,以上就是今天内容的全部讲解,如果有不懂的地方,随时私聊😘

我们下半部分见😁

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值